uninteresting$87650$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

uninteresting$87650$ - traduzione in greco

LOGICAL CONTRADICTION IN WHICH EVERY POSSIBLE SOLUTION TO THE PROBLEM IS EXEMPT: IF THERE WERE SOME UNINTERESTING NATURAL NUMBERS, THERE WOULD BE A SMALLEST UNINTERESTING NUMBER, WHICH WOULD BE THEREFORE INTERESTING
Interesting and uninteresting numbers; Uninteresting numbers; Uninteresting number; Interesting number; Last interesting number; Boring number; All numbers are interesting; Interesting numbers; Least uninteresting number; 12407 (number); 12407; Dull number; The smallest positive integer that does not have an entry on Wikipedia; 12,407; Smallest uninteresting number; Least interesting number

uninteresting      
adj. ανιαρός, μη ενδιαφέρων, πληκτικός

Definizione

attention
n.
1.
Care, heed, regard, heedfulness, mindfulness, notice, observation, consideration, advertence, circumspection, watch, watchfulness, alertness.
2.
Application, reflection, study.
3.
Civility, courtesy, politeness, deference, respect, regard.
4.
[Esp. in pl.] Court, courtship, suit, devoirs, devotion, addresses, wooing.

Wikipedia

Interesting number paradox

The interesting number paradox is a humorous paradox which arises from the attempt to classify every natural number as either "interesting" or "uninteresting". The paradox states that every natural number is interesting. The "proof" is by contradiction: if there exists a non-empty set of uninteresting natural numbers, there would be a smallest uninteresting number – but the smallest uninteresting number is itself interesting because it is the smallest uninteresting number, thus producing a contradiction.

"Interestingness" concerning numbers is not a formal concept in normal terms, but an innate notion of "interestingness" seems to run among some number theorists. Famously, in a discussion between the mathematicians G. H. Hardy and Srinivasa Ramanujan about interesting and uninteresting numbers, Hardy remarked that the number 1729 of the taxicab he had ridden seemed "rather a dull one", and Ramanujan immediately answered that it is interesting, being the smallest number that is the sum of two cubes in two different ways.