uitstekend$1$ - traduzione in Inglese
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

uitstekend$1$ - traduzione in Inglese

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

uitstekend      
excellently, pre-eminently, nicely, in the pink
number one         
  • The 24-hour tower clock in [[Venice]], using ''J'' as a symbol for 1
  • [[Hoefler Text]], a typeface designed in 1991, represents the numeral 1 as similar to a small-caps I.
  • alt=Horizontal guidelines with a one fitting within lines, a four extending below guideline, and an eight poking above guideline
  • 1 as a resin identification code, used in recycling
  • This Woodstock typewriter from the 1940s lacks a separate key for the numeral 1.
NATURAL NUMBER
1 (the number); ¹; One (number); 1 E0; One; Unity (number); ₁; ١; ۱; Number one; ១; 1.0; No 1; 1; NO.1; ➊; ➀; ❶; Unity (mathematics); The number one; 𐡘; ꩑; ༡; 1 (numeral); One (1); Number-one; Numberone; ௧; १; ১; ੧; No.1; ૧; ୧; ౧; ೧; ൧; ߁; ໑; ၁; ႑; ꧑; ᥇; 𐒡; ꣑; 1 (glyph); Firstly; Nº 1; Unit number; 1e0; 1E0; 1 (number); 1️⃣; 10^0; Unit (number); ASCII 49; \x31; 2^0; U+0031; User talk:Theonlysameer/sandbox; 1024^0; 1×2^0; 1B0; 1×10^0; 1000^0; 100^0; 1^1; 1^0; 1⁰; 1¹; 1**0; 1**1; 2⁰; 2**0; 1²; 1³; 1⁴; 1⁵; 1⁶; 1⁷; 1⁸; 1⁹; 1¹⁰; 1^2; 1^3; 1^4; 1^5; 1^6; 1^7; 1^8; 1^9; 1^10; 1**2; 1**3; 1**4; 1**5; 1**6; 1**7; 1**8; 1**9; 1**10; 10⁰; 10**0; 1000⁰; 1000**0; 1 B0; 1024⁰; 1024**0
nummer één (de beste, de eerste)
buzz bomb         
  • War Memorial in Greencastle, Indiana
  • V-1 on display at the [[Air Zoo]]
  • Model of an [[Arado Ar 234]] carrying a V-1 at the [[Technikmuseum Speyer]]
  • A German crew rolls out a V-1.
  • Max Wachtel
  • A V-1 and launching ramp section on display at the [[Imperial War Museum Duxford]] (2009)
  • Fieseler F103R Reichenberg piloted V-1
  • Luftwaffe}} Heinkel He 111 H-22. This version could carry FZG 76 (V1) flying bombs, but only a few aircraft were produced in 1944. Some were used by bomb wing ''KG'' 3.
  • Aftermath of a V-1 bombing, London, 1944
  • Imperial War Museum London]]
  • A reconstructed starting ramp for V-1 flying bombs, [[Historical Technical Museum, Peenemünde]] (2009)
  • Grove Road]], [[Mile End]], which now carries this [[English Heritage]] [[blue plaque]]. Eight civilians were killed in the blast.
  • A Spitfire using its wingtip to "topple" a V-1 flying bomb
  • A battery of static QF 3.7-inch guns on railway-sleeper platforms at [[Hastings]] on the south coast of England, July 1944
  • 6}} in 1951
  • V-1 (Fieseler Fi 103) in flight
  • V-1 cutaway
  • Musée de l'Armée]], Paris
  • Rear view of V-1 in [[IWM Duxford]], showing launch ramp section
  • V-1 flying bomb on display at the Stampe & Vertongen Museum
  • Éperlecques]]
  • V-1 launch ramp recreated at the Imperial War Museum, Duxford
  • V-1 launch piston for Walter catapult
1944 CRUISE MISSILE BY FIESELER
V-1 Flying Bomb; V1 missile; V1 Flying Bomb; Fieseler Fi 103; V-1 rocket; V1 flying bomb; Vergeltungswaffe 1; Buzz bomb; V-1 cruise missile; Buzzbomb; V-1 Missile; Fieseler Fi-103; Argus As 14; Flying Bombs; V-1 Cruise missile; Fi-103; V-1 drone; Fi 103; V1 rocket; V-1 flying bombs; Fieseler Fi 103R Selbstopfer; V-1 (flying bomb); Doodlebug (flying bomb); Fieseler Fi103; V1 rockets; V-1 (missile); Fieseler Fi 103 V-1 flying bomb; Robot Blitz; V-1 missile; FZG-76
zoembom (die op engeland geworpen werd in de tweede wereld oorlog)

Definizione

one
the upper limit of intoxication or exhaustion
after the second pint of gin, i was hard one-ing

Wikipedia

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.