assessed valuation - traduzione in Inglese
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

assessed valuation - traduzione in Inglese

Valuation domain; Center (valuation ring)

assessed valuation      

[ə'sestvælju'eiʃ(ə)n]

экономика

оценочная стоимость (имущества и т. п.)

Смотрите также

rateable value

assessed valuation      
оценочная стоимость
assessed valuation      
стоимость по оценке, оценочная стоимость (напр. имущества)

Definizione

valuation
n.
1.
Appraisement, estimation.
2.
Value, worth.

Wikipedia

Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where

( A , m A ) {\displaystyle (A,{\mathfrak {m}}_{A})} dominates ( B , m B ) {\displaystyle (B,{\mathfrak {m}}_{B})} if A B {\displaystyle A\supseteq B} and m A B = m B {\displaystyle {\mathfrak {m}}_{A}\cap B={\mathfrak {m}}_{B}} .

Every local ring in a field K is dominated by some valuation ring of K.

An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.

Traduzione di &#39assessed valuation&#39 in Russo