unmixed ideal - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

unmixed ideal - traduzione in russo

COMMUTATIVE RING, NAMED AFTER IRVIN COHEN AND FRANCIS SOWERBY MACAULAY (1862-1937)
Cohen-Macaulay; Macaulay ring; Unmixedness theorem; Cohen–Macaulay; Cohen-Macaulay ring; Unmixed ideal; Cohen-Macauley; Cohen–Macaulay local ring; Unmixed theorem; Macaulay's unmixed theorem; Cohen-Macaulay local ring; Cohen–Macaulay module; Cohen-Macaulay module; Cohen–Macaulay scheme; Cohen-Macaulay scheme

unmixed ideal         

математика

несмешанный идеал

ideal         
WIKIMEDIA DISAMBIGUATION PAGE
Ideal (mathematics); Ideals; Ideal (disambiguation)

[ai'diəl]

общая лексика

абсолютный

дивизор

идеал

идеальный

мысленный

нереальный

несобственный

теоретический

прилагательное

общая лексика

идеальный

отличный

совершенный

превосходный

воображаемый

абстрактный

мысленный

нереальный

неосуществимый

идеальный, совершенный

воображаемый, мысленный

философия

идеалистический

синоним

perfect

существительное

[ai'diəl]

общая лексика

идеал

верх совершенства

образец

философия

идеальное

совершенное

синоним

prototype

maximal filter         
SPECIAL KIND OF LOWER SETS OF AN ORDER
Order ideal; Prime filter; Ideal (lattice theory); Partial Order Ideal; Partial order ideal; Decreasing subset; Semi-ideal; Maximal filter; Prime ideal (order theory); Order-ideal

математика

максимальный фильтр

ультрафильтр

Definizione

ideal
<theory> In domain theory, a non-empty, downward closed subset which is also closed under binary least upper bounds. I.e. anything less than an element is also an element and the least upper bound of any two elements is also an element. (1997-09-26)

Wikipedia

Cohen–Macaulay ring

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

They are named for Francis Sowerby Macaulay (1916), who proved the unmixedness theorem for polynomial rings, and for Irvin Cohen (1946), who proved the unmixedness theorem for formal power series rings. All Cohen–Macaulay rings have the unmixedness property.

For Noetherian local rings, there is the following chain of inclusions.

Universally catenary ringsCohen–Macaulay ringsGorenstein ringscomplete intersection ringsregular local rings
Traduzione di &#39unmixed ideal&#39 in Russo