OR operator (Inclusive OR operator) - traduzione in spagnolo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

OR operator (Inclusive OR operator) - traduzione in spagnolo

LOGICAL CONNECTIVE OR
Disjunction; Logical or; Or (logic); Disjunction (logic); Inclusive or; Logical OR; Inclusive disjunction; ⋁; Nonexclusive disjunction; Non-exclusive disjunction; Or symbol; ⋎; ⟇; ⟏; Boolean OR; Logical sum; Or operator; Parallel OR; Parallel or; Inclusive OR; Inclusive-or; Inclusive-OR; OR (logic)
  • OR [[logic gate]]
  • Venn diagram of <math>\scriptstyle A \lor B \lor C</math>

OR operator (Inclusive OR operator)      
Operador lógico "O", operador inclusivo "O"
disjunction         
(n.) = separación
Ex: Digital technology has ushered us into a ceaseless spiral of change which represents, not so much an evolution, but a formidable disjunction with the analog world.
logical sum         
(n.) = suma lógica
Ex: Logical sum, symbolized by A OR B, or A + B.

Definizione

trato hecho
term. comp.
Comercio. Fórmula familiar con que se da por definitivo un convenio o acuerdo.

Wikipedia

Logical disjunction

In logic, disjunction is a logical connective typically notated as {\displaystyle \lor } and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula S W {\displaystyle S\lor W} , assuming that S {\displaystyle S} abbreviates "it is sunny" and W {\displaystyle W} abbreviates "it is warm".

In classical logic, disjunction is given a truth functional semantics according to which a formula ϕ ψ {\displaystyle \phi \lor \psi } is true unless both ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages.