radiômetro de correlação - traduzione in
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

radiômetro de correlação - traduzione in

RELAÇÃO ESTATÍSTICA ENTRE DUAS VARIÁVEIS.
Coeficiente de correlação; Correlação funcional
  • commoldura
  • commoldura
  • commoldura
  • 464x464px
  • 464x464px
  • 298x298px
  • 298x298px

correlação         
(матем.) корреляция, соотношение, связь
correlação         
{f}
- (матем.) корреляция; соотношение; связь
correlação         
сопоставление данных

Definizione

ДЕ-ЮРЕ
[дэ, рэ], нареч., юр.
Юридически, формально (в отличие от де-факто).

Wikipedia

Correlação
Este artigo abrange a correlação entre duas variáveis. O termo correlação pode também significar a relação invertida de duas funções ou a correlação eletrônica em sistemas moleculares.

Em probabilidade e estatística, correlação, dependência ou associação é qualquer relação estatística (causal ou não causal) entre duas variáveis e correlação é qualquer relação dentro de uma ampla classe de relações estatísticas que envolva dependência entre duas variáveis. Por exemplo, a correlação entre a estatura dos pais e a estatura dos pais e dos filhos. Embora seja comumente denotada como a medida de relação entre duas variáveis aleatórias, correlação não implica causalidade. Em alguns casos, correlação não identifica dependência entre as variáveis. Em geral, há pares de variáveis que apresentam forte dependência estatística, mas que possuem correlação nula. Para este casos, são utilizadas outras medidas de dependência.

Informalmente correlação é sinônimo de dependência. Formalmente variáveis são dependentes se não satisfizerem a propriedade matemática da independência probabilística. Em termos técnicos, correlação refere–se a qualquer um dos vários tipos específicos de relação entre os valores médios. Existem diferentes coeficientes de correlação ( ρ {\displaystyle \rho } ou r {\displaystyle r} ) para medir o grau de correlação. Um dos coeficientes de correlação mais conhecidos é o coeficiente de correlação de Pearson, obtido pela divisão da covariância de duas variáveis pelo produto dos seus desvios padrão e sensível a uma relação linear entre duas variáveis. Entretanto, há outros coeficientes de correlação mais robustos que o coeficiente de correlação de Pearson. Isto é, mais sensíveis às relações não lineares.