axioma jurídico - definizione. Che cos'è axioma jurídico
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è axioma jurídico - definizione

Axioma da especificação; Axioma da compreensão

Pluralismo jurídico         
Pluralismo jurídico é decorrente da existência de dois ou mais sistemas jurídicos, dotados de eficácia, concomitantemente em um mesmo ambiente espacio-temporal.
Axioma da separação         
O Axioma da separação (também conhecido como Axioma da compreensão ou Axioma de especificação) é um dos axiomas (ou, mais precisamente, um dos esquemas de axiomas) que fazem parte dos Axiomas de Zermelo-Fraenkel da Teoria dos Conjuntos.
Axioma da regularidade         
O AXIOMA QUE GARANTE QUE UM CONJUNTO NÃO PODE SER MEMBRO DELE MESMO
Axioma da Regularidade; Axioma da fundação
O axioma da regularidade, também conhecido como axioma da fundação, em teoria dos conjuntos, é o que garante, essencialmente, que um conjunto não pode ser membro dele mesmo (diretamente, como X \in X\,, ou indiretamente, através de uma cadeia de outros conjuntos X \in X_1 \in X_2 \ldots \in X\,.

Wikipedia

Axioma da separação

O Axioma da separação (também conhecido como Axioma da compreensão ou Axioma de especificação) é um dos axiomas (ou, mais precisamente, um dos esquemas de axiomas) que fazem parte dos Axiomas de Zermelo-Fraenkel da Teoria dos Conjuntos.

Essencialmente, o axioma diz que se um conjunto A existe, e conseguimos descrever (através de uma propriedade) elementos deste conjunto, então existe um conjunto B, subconjunto de A, que contém estes elementos.

Este "axioma" é, a rigor, um esquema de axiomas, porque, para cada propriedade Φ, existe um "axioma da separação".