Площадей закон - definizione. Che cos'è Площадей закон
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Площадей закон - definizione

ЗАКОНЫ НЕБЕСНОЙ МЕХАНИКИ, ОПИСЫВАЮЩИЕ ДВИЖЕНИЕ ПЛАНЕТ ВОКРУГ СОЛНЦА
Закон Кеплера; Первый закон Кеплера; 1-й закон Кеплера; 1 закон Кеплера; Второй закон Кеплера; 2-й закон Кеплера; 2 закон Кеплера; Третий закон Кеплера; 3-й закон Кеплера; 3 закон Кеплера; Кеплера законы; Кеплеровская динамика; Площадей закон
  • Первый закон Кеплера
  • Второй закон Кеплера
  • thumb
  • Третий закон Кеплера
  • Третий закон Кеплера

ПЛОЩАДЕЙ ЗАКОН         
закон движения тела под действием центральные силы, согласно которому траектория центра масс тела лежит в плоскости, проходящей через центр силы, а радиус-вектор, соединяющий центр силы с центром масс тела, в любые равные промежутки времени описывает равные площади. Площадей закон справедлив для движения планет вокруг Солнца или спутника вокруг планеты (см. Кеплера законы).
Площадей закон         

закон движения материальной точки (или центра масс тела) под действием центральной силы, согласно которому: а) траекторией точки является плоская кривая, лежащая в плоскости, проходящей через центр силы; б) площадь, описываемая радиусом-вектором точки, проведённым из центра силы, растет пропорционально времени, т. е. точка движется с постоянной секторной скоростью. П. з. открыт И. Кеплером для движения планет вокруг Солнца и опубликован в 1609 (см. Кеплера законы), а для общего случая доказан И. Ньютоном (1687).

Кеплера законы         

три закона движения планет, открытые И. Кеплером в начале 17 в. Основной труд Кеплера "Новая астрономия", напечатанный в 1609, содержал два первых закона. Третий закон был открыт позднее: в 3-й главе 5-й книги "Гармония Мира" (1619) Кеплер отметил, что идея нового закона блеснула у него внезапно 8 марта 1618 года, а 15 мая он закончил все необходимые вычисления, которые показали, что закон верен. В дальнейшем К. з. уточнялись и окончательно получили следующую формулировку.

Первый К. з. В невозмущённом движении (т. е. в задаче двух тел) орбита движущейся точки есть кривая второго порядка, в одном из фокусов которой находится центр силы притяжения. Таким образом, орбита материальной точки в невозмущённом движении - это некоторое коническое сечение, то есть окружность, эллипс, парабола или гипербола. Второй К. з. В невозмущенном движении площадь, описываемая радиус-вектором движущейся точки, изменяется пропорционально времени. Первые два К. з. имеют место только для невозмущенного движения, происходящего под действием силы притяжения, обратно пропорциональной квадрату расстояния до центра силы. Третий К. з. В невозмущенном эллиптическом движении двух материальных точек произведение квадратов времен обращения на суммы масс центральной и движущейся точек как кубы больших полуосей их орбит, т. е.

,

где Т1 и Т2 - периоды обращения двух точек, m1 и m2 - их массы, m0 - масса центральной точки, a1 и а2 - большие полуоси орбит точек. Пренебрегая массами планет по сравнению с массой Солнца, получаем третий К. з. в его первоначальной форме: квадраты периодов обращений двух планет вокруг Солнца относятся как кубы больших полуосей их эллиптических орбит. Третий К. з. может быть применен только для случая эллиптических орбит, а поэтому не имеет такого общего значения, как два первых закона. Однако, будучи применен к планетам, спутникам планет, компонентам двойных звёзд, движущимся по эллиптическим орбитам, он позволяет определить некоторые характеристики небесных светил. Так, на основании третьего К. з. возможно подсчитать массы планет, принимая массу Солнца m0 = 1. Зная из наблюдений период обращения одного компонента двойной звезды относительно другого и измерив её Параллакс, можно найти сумму их масс. Если параллаксы звёзд неизвестны, то на основании допущения, что массы компонентов соответствуют их физическим особенностям, по третьему К. з. можно вычислить расстояния до звёзд (это так называемы динамические параллаксы звёзд).

Открыв первые два закона, Кеплер составил основанные на них таблицы движения планет, опубликованные в 1627 под названием "Рудольфовых таблиц". Эти таблицы по своей точности далеко превзошли все прежние, ими пользовались в практической астрономии на протяжении 17 и 18 вв. Успех Кеплера в объяснении движения планет обусловлен новым методологическим подходом к решению вопроса: впервые в истории астрономии была сделана попытка определить планетные орбиты непосредственно из наблюдений.

Уже Кеплеру было ясно, что открытые им законы не являются совершенно строгими. Если для планет они выполняются с большой точностью, то для того, чтобы представить движение Луны, оказалось необходимым ввести эллипс с вращающейся линией апсид и добавить неравенства, называемые эвекцией и вариацией. Эти неравенства были открыты эмпирически ещё Птолемеем (См. Птолемей) во 2 в. (эвекция) и Т. Браге в 16 в. (вариация) и объяснены только после открытия в 17 в. И. Ньютоном закона всемирного тяготения (см. Ньютона закон тяготения). К. з., найденные из наблюдений, были выведены Ньютоном как строгое решение задачи двух тел.

Лит.: Дубошин Г. Н., Небесная механика. Основные задачи и методы, 2 изд., М., 1968: Субботин М. Ф., Введение в теоретическую астрономию, М., 1968; Рябов Ю. А., К 350-летию открытия первых двух законов Кеплера, в кн.: Астрономический календарь на 1959, М., 1958.

Г. А. Чеботарёв.

Wikipedia

Законы Кеплера

Зако́ны Ке́плера — три эмпирических соотношения, установленные Иоганном Кеплером на основе длительных астрономических наблюдений Тихо Браге. Изложены Кеплером в работах, опубликованных между 1609 и 1619 годами. Описывают идеализированную гелиоцентрическую орбиту планеты.

Соотношения Кеплера позволили Ньютону постулировать закон всемирного тяготения, который стал фундаментальным в классической механике. В её рамках законы Кеплера являются решением задачи двух тел в случае пренебрежимо малой массы планеты, то есть в предельном переходе m p / m s
Che cos'è ПЛОЩАДЕЙ ЗАКОН - definizione