Прямоугольников формула - definizione. Che cos'è Прямоугольников формула
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Прямоугольников формула - definizione

ПРИБЛИЖЁННЫЙ СПОСОБ ВЫЧИСЛЕНИЯ ИНТЕГРАЛА
Трапеций формула; Прямоугольников формула; Интегрирование численное
  • трапеции]] под графиком
  • Пример узлов интегрирования на [[тетраэдр]]е

ПРЯМОУГОЛЬНИКОВ ФОРМУЛА         
формула для приближенного вычисления определенных интегралов (квадратурная формула), имеющая вид: В приложениях выбор значения n диктуется конкретными условиями задачи.
Прямоугольников формула         

простейшая формула для приближённого вычисления определённого интеграла, имеющая вид

где h = (b - a)/n, xk = ξ + (k - 1) h и a ≤ ξ ≤ a + h. Наиболее точной из всех П. ф. является формула средних ординат, в которой ξ = а + h/2; если )f '' (x)) < М на отрезке [а, b], то для этой формулы

Остальные П. ф. в общем случае менее точны; поэтому, например, вместо формул, в которых ξ = а и ξ = а + h, предпочитают пользоваться их средним арифметическим (см. Трапеций формула), т.к. погрешность при этом будет не больше (b - a)3M/12n2. Если обе части П. ф. для ξ = а + h/2, ξ = а и ξ = а + h умножить соответственно на коэффициенты 2/3, 1/6, и 1/6, а затем сложить, то получится более точная формула приближённого интегрирования (см. Симпсона формула), погрешность которой не больше (b - a)5N/2880n 4, где N - максимум |f IV (x)| на отрезке [а, b].

ТРАПЕЦИЙ ФОРМУЛА         
формула для приближенного вычисления определенных интегралов (квадратурная формула), имеющая вид:где h = (b-a) /n, fk = f (a + kh), k=1,..., n-1.

Wikipedia

Численное интегрирование

Численное интегрирование (историческое название: (численная) квадратура) — вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.

Численное интегрирование применяется, когда:

  1. Сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.
  2. Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции. Например, f ( x ) = exp ( x 2 ) {\displaystyle f(x)=\exp(-x^{2})} .

В этих двух случаях невозможно вычисление интеграла по формуле Ньютона — Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

Che cos'è ПРЯМОУГОЛЬНИКОВ ФОРМУЛА - definizione