Quadratisches Reziprozitätsgesetz
Das quadratische Reziprozitätsgesetz gibt, zusammen mit den beiden unten genannten Ergänzungssätzen, ein Verfahren an, um das Legendre-Symbol zu berechnen und damit zu entscheiden, ob eine Zahl quadratischer Rest oder Nichtrest einer (anderen) Zahl ist. Die Entdeckung des quadratischen Reziprozitätsgesetzes durch Euler und der Beweis durch Gauß (Disquisitiones Arithmeticae 1801, er hatte aber bereits 1796 einen Beweis) waren die Ausgangspunkte der Entwicklung der modernen Zahlentheorie.