Bezier surface - definitie. Wat is Bezier surface
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Bezier surface - definitie

SPECIES OF MATHEMATICAL SPLINE USED IN COMPUTER GRAPHICS, COMPUTER-AIDED DESIGN, AND FINITE ELEMENT MODELING, IS DEFINED BY A SET OF CONTROL POINTS
Bicubic patch; Bezier surface; Bezier surfaces; Bezier patch; Bézier patch

Bézier surface         
Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling.
Bezier surface         
<graphics> A surface defined by mathematical formulae, used in computer graphics. A surface P(u, v), where u and v vary orthogonally from 0 to 1 from one edge of the surface to the other, is defined by a set of (n+1)*(m+1) "control points" (X(i, j), Y(i, j), Z(i, j)) for i = 0 to n, j = 0 to m. P(u, v) = Sum i=0..n {Sum j=0..m [ (X(i, j), Y(i, j), Z(i, j)) * B(i, n, u) * B(j, m, v)]} B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! Bezier surfaces are an extension of the idea of {Bezier curves}, and share many of their properties. (1996-06-12)
Biharmonic Bézier surface         
Biharmonic Bezier surface
A biharmonic Bézier surface is a smooth polynomial surface which conforms to the biharmonic equation and has the same formulations as a Bézier surface. This formulation for Bézier surfaces was developed by Juan Monterde and Hassan Ugail.

Wikipedia

Bézier surface

Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central control points; rather, it is "stretched" toward them as though each were an attractive force. They are visually intuitive, and for many applications, mathematically convenient.