C*-algebra - definitie. Wat is C*-algebra
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is C*-algebra - definitie

BANACH *-ALGEBRA SUCH THAT |𝑥*𝑥|=|𝑥||𝑥*|=|𝑥|²
B*-algebra; C-star algebra; B-star algebra; C* algebra; C-star-algebra; C* Algebra; C* algebras; B-star-algebra; C-*-Algebra; B-*-Algebra; B-*-algebra; C-*-algebra; C*-algebras; B* algebra; Commutative C*-algebra; Cstar algebra; C star algebra; C-algebra; †-algebra; †-closed algebra

C*-algebra         
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:
Approximately finite-dimensional C*-algebra         
AF C*-algebra; AF algebra; AF-algebra; Approximately finite dimensional C*-algebra
In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli.
Universal C*-algebra         
Universal C-star-algebra
In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator.

Wikipedia

C*-algebra

In mathematics, specifically in functional analysis, a C-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

  • A is a topologically closed set in the norm topology of operators.
  • A is closed under the operation of taking adjoints of operators.

Another important class of non-Hilbert C*-algebras includes the algebra C 0 ( X ) {\displaystyle C_{0}(X)} of complex-valued continuous functions on X that vanish at infinity, where X is a locally compact Hausdorff space.

C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establish a general framework for these algebras, which culminated in a series of papers on rings of operators. These papers considered a special class of C*-algebras which are now known as von Neumann algebras.

Around 1943, the work of Israel Gelfand and Mark Naimark yielded an abstract characterisation of C*-algebras making no reference to operators on a Hilbert space.

C*-algebras are now an important tool in the theory of unitary representations of locally compact groups, and are also used in algebraic formulations of quantum mechanics. Another active area of research is the program to obtain classification, or to determine the extent of which classification is possible, for separable simple nuclear C*-algebras.