domain calculus - definitie. Wat is domain calculus
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is domain calculus - definitie

CALCULUS FOR THE RELATIONAL DATA MODEL
Domain calculus

domain calculus         
<database> A form of relational calculus in which scalar variables take values drawn from a given domain. Examples of the domain calculus are ILL, FQL, DEDUCE and the well known Query By Example (QBE). INGRES is a relational DBMS whose DML is based on the relational calculus.
Domain relational calculus         
In computer science, domain relational calculus (DRC) is a calculus that was introduced by Michel Lacroix and Alain Pirotte as a declarative database query language for the relational data model.Michel Lacroix, Alain Pirotte: Domain-Oriented Relational Languages.
Felicific calculus         
ALGORITHM MEASURING THE AMOUNT OF PLEASURE THAT A SPECIFIC ACTION IS LIKELY TO CAUSE
Utility calculus; Hedonic calculus; Hedonic Calculus; Hedonistic calculus; Hedon (unit); Mathematics of philosophy; Hedons and dolor; Pleasure calculus; Utilitarian calculus
The felicific calculus is an algorithm formulated by utilitarian philosopher Jeremy Bentham (1747–1832) for calculating the degree or amount of pleasure that a specific action is likely to induce. Bentham, an ethical hedonist, believed the moral rightness or wrongness of an action to be a function of the amount of pleasure or pain that it produced.

Wikipedia

Domain relational calculus

In computer science, domain relational calculus (DRC) is a calculus that was introduced by Michel Lacroix and Alain Pirotte as a declarative database query language for the relational data model.

In DRC, queries have the form:

{ X 1 , X 2 , . . . . , X n p ( X 1 , X 2 , . . . . , X n ) } {\displaystyle \{\langle X_{1},X_{2},....,X_{n}\rangle \mid p(\langle X_{1},X_{2},....,X_{n}\rangle )\}}

where each Xi is either a domain variable or constant, and p ( X 1 , X 2 , . . . . , X n ) {\displaystyle p(\langle X_{1},X_{2},....,X_{n}\rangle )} denotes a DRC formula. The result of the query is the set of tuples X1 to Xn that make the DRC formula true.

This language uses the same operators as tuple calculus, the logical connectives ∧ (and), ∨ (or) and ¬ (not). The existential quantifier (∃) and the universal quantifier (∀) can be used to bind the variables.

Its computational expressiveness is equivalent to that of relational algebra.