Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT
Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
hoe het woord wordt gebruikt
gebruiksfrequentie
het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
opties voor woordvertaling
Gebruiksvoorbeelden (meerdere zinnen met vertaling)
etymologie
Tekstvertaling met behulp van kunstmatige intelligentie
Voer een willekeurige tekst in. De vertaling zal worden uitgevoerd door middel van kunstmatige intelligentietechnologie.
Verbuiging van werkwoorden met behulp van de kunstmatige intelligentie ChatGPT
Voer een werkwoord in elke taal in. Het systeem geeft een tabel met de verbuigingen van het werkwoord in alle mogelijke tijden.
Vraag in vrije vorm aan kunstmatige intelligentie ChatGPT
Voer een vraag in vrije vorm in, in welke taal dan ook.
U kunt gedetailleerde zoekopdrachten invoeren die uit meerdere zinnen bestaan. Bijvoorbeeld:
Geef zoveel mogelijk informatie over de geschiedenis van de domesticatie van huiskatten. Hoe kwam het dat mensen in Spanje katten begonnen te domesticeren? Van welke beroemde historische figuren uit de Spaanse geschiedenis is bekend dat ze eigenaren zijn van huiskatten? De rol van katten in de moderne Spaanse samenleving.
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
<mathematics> (Or "linear transformation") A function from a
vector space to a vector space which respects the additive
and multiplicative structures of the two: that is, for any
two vectors, u, v, in the source vector space and any
scalar, k, in the field over which it is a vector space, a
linear map f satisfies f(u+kv) = f(u) + kf(v).
(1996-09-30)
Linear map
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable and the equation of constraints can be described by generalized coordinates. Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous.