rotating aerial direction finder - definitie. Wat is rotating aerial direction finder
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is rotating aerial direction finder - definitie

MEASUREMENT OF THE DIRECTION FROM WHICH A RECEIVED SIGNAL WAS TRANSMITTED
Direction finder; Radio direction finder; Radio direction-finding; Radio direction finding; Radio Direction Finding; Automatic Direction Finder; DFing; Dfing; Radio compass; Pelengation; Direction Finding; Radio Direction Finder; Radio-magnetic indicator; Automatic radio compass; Radio Detection Finding; Radio direction-finding station; Radio direction-finder station
  • The crossed-loops antenna atop the mast of a tug boat is a direction-finding design.
  • The RDF antenna on this B-17F is located in the prominent teardrop housing under the nose.
  • [[Amelia Earhart]]'s [[Lockheed Model 10 Electra]] with the circular ''RDF'' aerial visible above the cockpit
  • A portable, battery operated GT-302 Accumatic automatic direction finder for marine use
  • 6}}
  • Historic advertisement for Kolster radio compass
  • Direction finding antenna near the city of [[Lucerne]], [[Switzerland]]
  • Radiotriangulation scheme using two direction-finding antennas (A and B)
  • RDF stations (A, B) used for [[Radio triangulation]]}}
  • World War II US Navy high frequency radio direction finder
  • W.G. Wade of the National Bureau of Standards uses a large multi-loop antenna to perform RDF in this 1919 photo. This is a fairly small unit for the era.

direction finder         
¦ noun a system of aerials for locating the source of radio signals, used as an aid to navigation.
Automatic direction finder         
An automatic direction finder (ADF) is a marine or aircraft radio-navigation instrument that automatically and continuously displays the relative bearing from the ship or aircraft to a suitable radio station. ADF receivers are normally tuned to aviation or marine NDBs (Non-Directional Beacon) operating in the LW band between 190 – 535 kHz.
Direction finding         
Direction finding (DF), or radio direction finding (RDF), isin accordance with International Telecommunication Union (ITU)defined as radio location that uses the reception of radio waves to determine the direction in which a radio station or an object is located. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM).

Wikipedia

Direction finding

Direction finding (DF), or radio direction finding (RDF), is – in accordance with International Telecommunication Union (ITU) – defined as radio location that uses the reception of radio waves to determine the direction in which a radio station or an object is located. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM). By combining the direction information from two or more suitably spaced receivers (or a single mobile receiver), the source of a transmission may be located via triangulation. Radio direction finding is used in the navigation of ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. RDF was important in combating German threats during both the World War II Battle of Britain and the long running Battle of the Atlantic. In the former, the Air Ministry also used RDF to locate its own fighter groups and vector them to detected German raids.

RDF systems can be used with any radio source, although very long wavelengths (low frequencies) require very large antennas, and are generally used only on ground-based systems. These wavelengths are nevertheless used for marine radio navigation as they can travel very long distances "over the horizon", which is valuable for ships when the line-of-sight may be only a few tens of kilometres. For aerial use, where the horizon may extend to hundreds of kilometres, higher frequencies can be used, allowing the use of much smaller antennas. An automatic direction finder, which could be tuned to radio beacons called non-directional beacons or commercial AM radio broadcasters, was until recently, a feature of most aircraft, but is now being phased out.

For the military, RDF is a key tool of signals intelligence. The ability to locate the position of an enemy transmitter has been invaluable since World War I, and played a key role in World War II's Battle of the Atlantic. It is estimated that the UK's advanced "huff-duff" systems were directly or indirectly responsible for 24% of all U-boats sunk during the war. Modern systems often used phased array antennas to allow rapid beamforming for highly accurate results, and are part of a larger electronic warfare suite.

Early radio direction finders used mechanically rotated antennas that compared signal strengths, and several electronic versions of the same concept followed. Modern systems use the comparison of phase or doppler techniques which are generally simpler to automate. Early British radar sets were referred to as RDF, which is often stated was a deception. In fact, the Chain Home systems used large RDF receivers to determine directions. Later radar systems generally used a single antenna for broadcast and reception, and determined direction from the direction the antenna was facing.