paraxial - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

paraxial - vertaling naar frans

SMALL ANGLE APPROXIMATION IN GEOMETRIC OPTICS
Paraxial ray; Paraxial; Paraxial Approximation; Paraxial optics; Paraxial domain; Paraxial optical system
  • 1 - θ<sup>2</sup>/2}}.

paraxial      
paraxial, near the axis of an optical system (Optics)
paraxiallement      
paraxially, (Optics) in a paraxial manner (close to the axis of the optical system)

Definitie

Paraxial
·adj On either side of the axis of the skeleton.

Wikipedia

Paraxial approximation

In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens).

A paraxial ray is a ray which makes a small angle (θ) to the optical axis of the system, and lies close to the axis throughout the system. Generally, this allows three important approximations (for θ in radians) for calculation of the ray's path, namely:

sin θ θ , tan θ θ and cos θ 1. {\displaystyle \sin \theta \approx \theta ,\quad \tan \theta \approx \theta \quad {\text{and}}\quad \cos \theta \approx 1.}

The paraxial approximation is used in Gaussian optics and first-order ray tracing. Ray transfer matrix analysis is one method that uses the approximation.

In some cases, the second-order approximation is also called "paraxial". The approximations above for sine and tangent do not change for the "second-order" paraxial approximation (the second term in their Taylor series expansion is zero), while for cosine the second order approximation is

cos θ 1 θ 2 2   . {\displaystyle \cos \theta \approx 1-{\theta ^{2} \over 2}\ .}

The second-order approximation is accurate within 0.5% for angles under about 10°, but its inaccuracy grows significantly for larger angles.

For larger angles it is often necessary to distinguish between meridional rays, which lie in a plane containing the optical axis, and sagittal rays, which do not.