valuation$89478$ - vertaling naar grieks
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

valuation$89478$ - vertaling naar grieks

Valuation domain; Center (valuation ring)

valuation      
n. αξία, αξιολόγηση, εκτίμηση
market value         
PRICE AT WHICH AN ASSET WOULD TRADE IN A COMPETITIVE AUCTION SETTING
Market values
εμπορεύσιμη αξία, εμπορικί αξία

Definitie

valuation
n.
1.
Appraisement, estimation.
2.
Value, worth.

Wikipedia

Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where

( A , m A ) {\displaystyle (A,{\mathfrak {m}}_{A})} dominates ( B , m B ) {\displaystyle (B,{\mathfrak {m}}_{B})} if A B {\displaystyle A\supseteq B} and m A B = m B {\displaystyle {\mathfrak {m}}_{A}\cap B={\mathfrak {m}}_{B}} .

Every local ring in a field K is dominated by some valuation ring of K.

An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.