обеспечивать наиболее эффективное использование - vertaling naar Engels
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

обеспечивать наиболее эффективное использование - vertaling naar Engels

Эффективное доказательство

обеспечивать наиболее эффективное использование      

• Reflectors are especially designed to give the most effective use of the light.

мощность         
  • Аналоговый стрелочный ваттметр
  • Видеоурок: мощность
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, РАВНАЯ В ОБЩЕМ СЛУЧАЕ СКОРОСТИ ИЗМЕНЕНИЯ, ПРЕОБРАЗОВАНИЯ, ПЕРЕДАЧИ ИЛИ ПОТРЕБЛЕНИЯ ЭНЕРГИИ СИСТЕМЫ
Мощность (физика)
f.
power, capacity, output, cardinality; номинальная мощность нагрузки, capacity; функция мощности, power function; мощность кода, efficiency of a code
мощность         
  • Аналоговый стрелочный ваттметр
  • Видеоурок: мощность
ФИЗИЧЕСКАЯ ВЕЛИЧИНА, РАВНАЯ В ОБЩЕМ СЛУЧАЕ СКОРОСТИ ИЗМЕНЕНИЯ, ПРЕОБРАЗОВАНИЯ, ПЕРЕДАЧИ ИЛИ ПОТРЕБЛЕНИЯ ЭНЕРГИИ СИСТЕМЫ
Мощность (физика)

см. тж. на половинной мощности; работать на полную ~; средней мощности


• This chain is recommended for machines of greater horsepower.

Definitie

Эффективное поперечное сечение

эффективное сечение, сечение (в физике), величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определённое конечное состояние. Э. п. с. σ равно отношению числа dN таких переходов в единицу времени к плотности nv потока рассеиваемых частиц, падающих на мишень, т. е. к числу частиц, проходящих в единицу времени через единичную площадку, перпендикулярную к их скорости v (n - плотность числа падающих частиц): σ = dN/nv. Таким образом, Э. п. с. имеет размерность площади; обычно оно измеряется в см2. Различным типам переходов, наблюдаемых при рассеянии частиц, соответствуют разные Э. п. с. Упругое рассеяние частиц характеризуют дифференциальным Э. п. с. d σ/d Ω, равным отношению числа частиц, упруго рассеянных в единицу времени в единицу телесного угла, к потоку падающих частиц (d Ω - элемент телесного угла), и полным сечением σ, равным интегралу дифференциального сечения, взятому по полному телесному углу (Ω =стер). Для иллюстрации на рис. схематически изображен процесс упругого рассеяния точечных "классических" частиц на шарике радиуса R0 с "абсолютно жёсткой" поверхностью. Полное Э. п. С. рассеяния для этого случая равно геометрическому сечению шарика: σ = πR02.

При наличии неупругих процессов полное сечение складывается из Э. п. с. упругих и неупругих процессов. Для более детальной характеристики рассеяния вводят сечение для отдельных типов (каналов) неупругих реакций. Для множественных процессов (См. Множественные процессы) важное значение имеют т. н. инклюзивные сечения, описывающие вероятность появления в данном столкновении какой-либо определённой частицы или группы частиц.

Если взаимодействие между сталкивающимися частицами велико и быстро падает с расстоянием, то Э. п. с. по порядку величины, как правило, равно квадрату радиуса действия сил или геометрическому сечению системы (см. рис.); однако вследствие специфических квантовомеханических явлений Э. п. с. могут существенно отличаться от этих значений (например, в случаях резонансного рассеяния и Рамзауэра эффекта).

Экспериментальные измерения Э. п. с. рассеяния дают сведения о структуре сталкивающихся частиц. Так, измерения сечения упругого рассеяния α-частиц атомами позволили открыть атомное ядро, а упругого рассеяния электронов протонами и нейтронами (нуклонами) - определить радиусы нуклонов и распределение в них электрического заряда и магнитного момента (т. н. Формфакторы). Понятие Э. п. с. используется также в статистической физике при построении кинетических уравнений.

С. С. Герштейн.

Схема, поясняющая упругое рассеяние "классической" частицы на "абсолютно твёрдом" шарике. Рассеянию на угол ϑ = π - α отвечает параметр столкновения ρ = R0sin(α/2) = R0cos(ϑ/2), а сечение dσ рассеяния в телесный угол dΩ = 2πsinϑdϑ равно площади заштрихованного кольца: dϑ = 2πρdρ = (π/2)R02sinϑdϑ, т. е. дифференциальное сечение dσ/dΩ = R02/4, а полное сечение упругого рассеяния равно геометрическому сечению шарика: σ = πR02. При учёте квантовых (волновых) свойств частиц сечение получается иным. В предельном случае λ >> R0 (λ = ħ/ρ - длина волны де Бройля частицы, ρ - её импульс, ħ - постоянная Планка) рассеяние сферически симметрично, а полное сечение в 4 раза больше классического: σкв = 4πR02. При λ << R0 рассеяние на конечные углы (ϑ ≠ 0) напоминает классическое, однако под очень малыми углами δϑЭффективное поперечное сечениеλ/R0 происходит волновое "дифракционное" рассеяние с сечением πR02; т. о., полное сечение с учётом дифракции вдвое больше классического: σ = 2πR02.

Wikipedia

Конструктивное доказательство

Конструктивное доказательство — доказательство, в котором существование математического объекта доказывается путем прямого построения — в отличие от неконструктивного доказательства (также известного как чистая теорема существования), которое доказывает существование объекта с определёнными свойствами без предоставления конкретного примера. 

Конструктивная математика отвергает всё, кроме конструктивного доказательства. Это приводит к ограничению на допустимые методы доказательства (в частности, закон исключенного третьего не используется), а также другому пониманию терминов. Например, термин «или» имеет более сильное значение в конструктивной математике, чем в классической.

Иногда используется эквивалентный термин «эффективное доказательство».

Vertaling van &#39обеспечивать наиболее эффективное использование&#39 naar Engels