Ge-junction transistor - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Ge-junction transistor - vertaling naar russisch

FIRST TYPE OF BIPOLAR JUNCTION TRANSISTOR MADE
Grown junction transistor
  • An NPN grown-junction transistor with the cover removed to show the germanium ingot and the base wire.

Ge-junction transistor      

общая лексика

германиевый плоскостной транзистор

junction transistor         
  • Approximated Ebers&ndash;Moll model for an NPN transistor in the forward active mode. The collector diode is reverse-biased so ''I''<sub>CD</sub> is virtually zero. Most of the emitter diode current (''α''<sub>F</sub> is nearly 1) is drawn from the collector, providing the amplification of the base current.
  • Generalized h-parameter model of an NPN BJT.<br />''Replace '''x''' with '''e''', '''b''' or '''c''' for CE, CB and CC topologies respectively.''
  • 3D model of bipolar transistor
  • Symbol for NPN bipolar transistor with current flow direction
  • depleted regions]].
  •  url=https://archive.org/details/microelectronicc0000sedr/page/903
 }}</ref> ''I''<sub>B</sub>, ''I''<sub>C</sub> and ''I''<sub>E</sub> are the base, collector and emitter currents; ''I''<sub>CD</sub> and ''I''<sub>ED</sub> are the collector and emitter diode currents; ''α''<sub>F</sub> and ''α''<sub>R</sub> are the forward and reverse common-base current gains.
  • Ebers&ndash;Moll model for a PNP transistor
  • Hybrid-pi model
  • Simplified cross section of a planar ''NPN'' bipolar junction transistor
  • Structure and use of NPN transistor. Arrow according to schematic.
  • [[Band diagram]] for NPN transistor in active mode, showing injection of electrons from emitter to base, and their overshoot into the collector
  • [[Band diagram]] for NPN transistor at equilibrium
TRANSISTOR THAT USES BOTH ELECTRONS AND HOLES AS CHARGE CARRIERS
BJT; P-n-p transistor; N-p-n transistor; Bjt; Bipolar junction transistors; Bipolar Junction Transistor; Collector current; Bjt transistor; Emitter, base, and collector; Ebers-Moll; PNP (transistor polarity); Ebers-Moll model; PNP transistor; NPN transistor; Transistor beta; Ebers–Moll model; Bipolar transistor; Bipolar transistors; Power BJT; Junction transistor; P–n–p transistor; N–p–n transistor; H-parameter model; Emitter, base and collector; Emitter current; VBIC

общая лексика

контактный прибор

плоскостной полупроводниковый триод

плоскостной транзистор

bipolar transistor         
  • Approximated Ebers&ndash;Moll model for an NPN transistor in the forward active mode. The collector diode is reverse-biased so ''I''<sub>CD</sub> is virtually zero. Most of the emitter diode current (''α''<sub>F</sub> is nearly 1) is drawn from the collector, providing the amplification of the base current.
  • Generalized h-parameter model of an NPN BJT.<br />''Replace '''x''' with '''e''', '''b''' or '''c''' for CE, CB and CC topologies respectively.''
  • 3D model of bipolar transistor
  • Symbol for NPN bipolar transistor with current flow direction
  • depleted regions]].
  •  url=https://archive.org/details/microelectronicc0000sedr/page/903
 }}</ref> ''I''<sub>B</sub>, ''I''<sub>C</sub> and ''I''<sub>E</sub> are the base, collector and emitter currents; ''I''<sub>CD</sub> and ''I''<sub>ED</sub> are the collector and emitter diode currents; ''α''<sub>F</sub> and ''α''<sub>R</sub> are the forward and reverse common-base current gains.
  • Ebers&ndash;Moll model for a PNP transistor
  • Hybrid-pi model
  • Simplified cross section of a planar ''NPN'' bipolar junction transistor
  • Structure and use of NPN transistor. Arrow according to schematic.
  • [[Band diagram]] for NPN transistor in active mode, showing injection of electrons from emitter to base, and their overshoot into the collector
  • [[Band diagram]] for NPN transistor at equilibrium
TRANSISTOR THAT USES BOTH ELECTRONS AND HOLES AS CHARGE CARRIERS
BJT; P-n-p transistor; N-p-n transistor; Bjt; Bipolar junction transistors; Bipolar Junction Transistor; Collector current; Bjt transistor; Emitter, base, and collector; Ebers-Moll; PNP (transistor polarity); Ebers-Moll model; PNP transistor; NPN transistor; Transistor beta; Ebers–Moll model; Bipolar transistor; Bipolar transistors; Power BJT; Junction transistor; P–n–p transistor; N–p–n transistor; H-parameter model; Emitter, base and collector; Emitter current; VBIC

полупроводники

биполярный транзистор

Definitie

Германий
(лат. Germanium)

Ge, химический элемент IV группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твёрдое вещество серо-белого цвета с металлическим блеском. Природный Г. представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Г. предсказал в 1871 Д. И. Менделеев и назвал этот неизвестный еще элемент "экасилицием" из-за близости свойств его с кремнием. В 1886 немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Г. в честь своей страны; Г. оказался вполне тождествен "экасилицию". До 2-й половины 20 в. практическое применение Г. оставалось весьма ограниченным. Промышленное производство Г. возникло в связи с развитием полупроводниковой электроники.

Общее содержание Г. в земной коре 7.10-4\% по массе, т. е. больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Г. встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др. Основная масса Г. рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, Г. присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

Физические и химические свойства. Г. кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575 Å. Плотность твёрдого Г. 5,327 г/см3 (25°С); жидкого 5,557 (1000°С); tпл 937,5°С; tkип около 2700°С; коэффициент теплопроводности Германий60 вт/(м (К), или 0,14 кал/(см (сек (град) при 25°С. Даже весьма чистый Г. хрупок при обычной температуре, но выше 550°С поддаётся пластической деформации. Твёрдость Г. по минералогической шкале 6-6,5; коэффициент сжимаемости (в интервале давлений 0-120 Гн/м2 или 0-12000 кгс/мм2) 1,4·10-7 м2/мн (1,4·10-6 см2/кгс); поверхностное натяжение 0,6 н/м (600 дин/см). Г. - типичный полупроводник с шириной запрещенной зоны 1,104·10-19, или 0,69 эв (25°С); удельное электросопротивление Г. высокой чистоты 0,60 ом (м (60 ом (см) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см2. сек (25°С) (при содержании примесей менее 10-8\%). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.

В химических соединениях Г. обычно проявляет валентности 2 и 4, причём более стабильны соединения 4-валентного Г. При комнатной температуре Г. устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Г. окисляется до окиси GeO и двуокиси GeO2. Двуокись Г. - белый порошок с tпл 1116°С; растворимость в воде 4,3 г/л (20°С). По химическим свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO2. nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с др. окислами могут быть получены производные германиевой кислоты - германаты металлов (In2CeO3, Na2Ge О3 и др.) - твёрдые вещества с высокими температурами плавления.

При взаимодействии Г. с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии CO). Одно из наиболее важных соединений Г. тетрахлорид GeCl4 - бесцветная жидкость; tпл -49,5°С; tkип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированной двуокиси. Получается хлорированием металлического Г. или взаимодействием GeO2 с концентрированной НС1. Известны также дигалогениды Г. общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Г. (например, GeOCl2).

Сера энергично взаимодействует с Г. при 900-1000°С с образованием дисульфида GeS2 - белого твёрдого вещества, tпл 825°С. Описаны также моносульфид GeS и аналогичные соединения Г. с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Г. при 1000-1100°С с образованием гермина (GeH) x - малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда GenH2n+2 вплоть до Ge9H20. Известен также гермилен состава GeH2. С азотом Г. непосредственно не реагирует, однако существует нитрид Ge3N4, получающийся при действии аммиака на Г. при 700-800°С. С углеродом Г. не взаимодействует. Г. образует соединения со многими металлами - германиды.

Известны многочисленные комплексные соединения Г., которые приобретают всё большее значение как в аналитической химии Г., так и в процессах его получения. Г. образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и др.). Получены гетерополикислоты Г. Так же, как и для др. элементов IV группы, для Г. характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (C2H5)4 Ge3.

Получение и применение. В промышленной практике Г. получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001-0,1\% Г. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2-10\% Г.). Извлечение Г. из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью её с хлором в водной среде или др. хлорирующими агентами с получением технического GeCl4. Для очистки GeCl4 применяют ректификацию и экстракцию примесей концентрированной HCl. 2) Гидролиз GeCl4 и прокаливание продуктов гидролиза до получения GeO2. 3) Восстановление GeO водородом или аммиаком до металла. Для выделения очень чистого Г., используемого в полупроводниковых приборах, проводится Зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Г. получают обычно зонной плавкой или методом Чохральского (см. Монокристаллы).

Г. - один из наиболее ценных материалов в современной полупроводниковой технике (см. Полупроводниковые материалы). Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Г. применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения Г. является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мк. Перспективны для практического использования многие сплавы, в состав которых входят Г., стекла на основе GeO2 и др. соединения Г. (см. также Германиды).

Лит.: Тананаев И. В., Шпирт М. Я., Химия германия, М., 1967; Угай Я. А., Введение в химию полупроводников, М., 1965; Давыдов В. И., Германий, М., 1964; Зеликман А. Н., Крейн О. Е., Самсонов Г. В., Металлургия редких металлов, 2 изд., М., 1964; Самсонов Г. В., Бондарев В. Н., Германиды, М., 1968.

Б. А. Поповкин.

Wikipedia

Grown-junction transistor

The grown-junction transistor was the first type of bipolar junction transistor made. It was invented by William Shockley at Bell Labs on June 23, 1948 (patent filed June 26, 1948), six months after the first bipolar point-contact transistor. The first germanium prototypes were made in 1949. Bell Labs announced Shockley’s grown-junction transistor on July 4, 1951.

An NPN grown-junction transistor is made of a single crystal of semiconductor material which has two PN junctions grown into it. During the growth process, a seed crystal is slowly pulled from a bath of molten semiconductor, which then grows into a rod-shaped crystal (boule). The molten semiconductor is doped N-type at the start. At a predetermined moment in the growth process a small pellet of a P-type dopant is added, almost immediately followed by a somewhat larger pellet of an N-type dopant. These dopants dissolve in the molten semiconductor changing the type of semiconductor subsequently grown. The resulting crystal has a thin layer of P-type material sandwiched between sections of N-type material. This P-type layer may be as little as a thousandth of an inch (25 μm) thick. The crystal is sliced, leaving the thin P-type layer in the center of the slice, then cut into bars. Each bar is made into a transistor by soldering its N-type ends to supporting and conducting leads, then welding a very fine gold lead to the central P-type layer, and finally encasing in a hermetically sealed can. A similar process, using the opposite dopants, makes a PNP grown-junction transistor.

The most difficult part of this process is welding the gold wire to the base layer, as the wire may have a larger diameter than the thickness of the base. To facilitate this operation, the gold wire is pointed or flattened until the end is thinner than the base layer. The tip of the gold wire is slid along the bar until electrical resistance measurement shows it is in contact with the base layer. At this time a pulse of current is applied, welding the wire in place. Unfortunately sometimes the weld is too large or slightly off center in the base layer. To avoid shorting the transistor, the gold wire is alloyed with a small amount of the same type dopant as used in the base. This causes the base layer to become slightly thicker at the point of the weld.

Grown-junction transistors rarely operated at frequencies above the audio range, due to their relatively thick base layers. Growing thin base layers was very hard to control and welding the wire to the base became harder the thinner it got. Higher-frequency operation could be obtained by welding a second wire on the opposite side of the base, making a tetrode transistor, and using special biasing on this second base connection.

Vertaling van &#39Ge-junction transistor&#39 naar Russisch