duplication of cube - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

duplication of cube - vertaling naar russisch

GEOMETRIC PROBLEM OF CONSTRUCTING A CUBE WITH TWICE THE VOLUME OF A GIVEN CUBE
Duplicating the cube; Delian problem; Duplication of the cube; Cube duplication; Doubling a cube; Doubing the cube; Doubling of the cube; Cube root of two; Doubling the Cube; Duplication of the Cube; Cube root of 2; Delian constant; ∛2; Double the cube; Duplicate the cube
  • A002580}}).
  • 300px

duplication of cube      

математика

удвоение куба

Delian problem         
трудная задача
tandem duplications         
  • Evolutionary fate of duplicate genes
  • Karyotype}}
DUPLICATION OF A GENE SEQUENCE WITHIN A GENOME
Duplicate gene; Chromosomal duplication; Chromosomal duplications; Chromosome duplication; Chromosome duplications; Duplication (genetics); Ancient gene duplication; Amplification (molecular biology); Tandem duplications; Tandem duplication; Duplication (chromosomal); Retrogene; Nucleotide duplication

общая лексика

тандемные дупликации

Definitie

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Wikipedia

Doubling the cube

Doubling the cube, also known as the Delian problem, is an ancient: 9  geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools.

The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x3 = 2; in other words, x = 2 3 {\displaystyle {\sqrt[{3}]{2}}} , the cube root of two. This is because a cube of side length 1 has a volume of 13 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2. The impossibility of doubling the cube is therefore equivalent to the statement that 2 3 {\displaystyle {\sqrt[{3}]{2}}} is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2. The field extension generated by 2 3 {\displaystyle {\sqrt[{3}]{2}}} , however, is of degree 3.

Vertaling van &#39duplication of cube&#39 naar Russisch