duty factor - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

duty factor - vertaling naar russisch

FRACTION OF A GIVEN PERIOD IN WHICH A SIGNAL OR SYSTEM IS ACTIVE
Duty Cycle; Duty-cycle; Duty ratio; Work ratio; Active ratio; Work fraction; Duty fraction; Active cycle; Duty factor; Pulse ratio; Mark/space ratio
  • Spectrum in relation to duty cycle
  • The duty cycle <math>D</math> is defined as the ratio between the pulse duration, or pulse width (<math>PW</math>) and the period (<math>T</math>) of a rectangular waveform

duty factor         

нефтегазовая промышленность

коэффициент использования (оборудования)

duty cycle         
продолжительность (период) включения
active cycle         

математика

активный цикл

Definitie

Простое число

целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге "Начал" Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп (См. Группа); в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел (См. Алгебраическое число) рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости - это привело к созданию понятия Идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч.

Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории (См. Чисел теория). Она ставится как изучение асимптотического поведения функции π(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что < π(x) < при любых x 2 [т. е., что π(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения π(х) к равен 1.

В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

(произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции - дзета-функции (См. Дзета-функция) ξ(s), определяемой при Res > 1 рядом

Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения ξ(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения ξ(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/2. Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой (См. Гольдбаха проблема), с не решенной ещё проблемой "близнецов" и другими проблемами аналитической теории чисел. Проблема "близнецов" состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших "близнецов" (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 -1 есть П. ч.; в нём 3376 цифр].

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. - Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Wikipedia

Duty cycle

A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle (%) may be expressed as:

D = P W T × 100 % {\displaystyle D={\frac {PW}{T}}\times 100\%}

Equally, a duty cycle (ratio) may be expressed as:

D = P W T {\displaystyle D={\frac {PW}{T}}}

where D {\displaystyle D} is the duty cycle, P W {\displaystyle PW} is the pulse width (pulse active time), and T {\displaystyle T} is the total period of the signal. Thus, a 60% duty cycle means the signal is on 60% of the time but off 40% of the time. The "on time" for a 60% duty cycle could be a fraction of a second, a day, or even a week, depending on the length of the period.

Duty cycles can be used to describe the percent time of an active signal in an electrical device such as the power switch in a switching power supply or the firing of action potentials by a living system such as a neuron.

The duty factor for periodic signal expresses the same notion; it is usually expressed as a fraction rather than as a percentage.

The duty cycle can also be notated as α {\displaystyle \alpha } .

Vertaling van &#39duty factor&#39 naar Russisch