fuzzy category - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

fuzzy category - vertaling naar russisch

SETS WHOSE ELEMENTS HAVE DEGREES OF MEMBERSHIP
Fuzzy sets; Fuzzy set theory; Fuzzification; Fuzzy subset; Credibility(fuzzy); Fuzzy category; Goguen category; Fuzzy Sets; Fuzzy relation equation; Pythagorean fuzzy set; Degree of membership; Uncertain set
  • Some Key Developments in the Introduction of Fuzzy Set Concepts.<ref name="CADsurvey"/>

fuzzy category         

математика

нечеткая категория

fuzzy set         

общая лексика

нечёткое множество

математика

размытое (нечеткое) множество

Смотрите также

fuzzy logic

fuzzification         

общая лексика

размывание, подготовка задачи для решения методами нечеткой логики

перевод дискретных базисных объектов в непрерывные

Смотрите также

defuzzification; quantification

Definitie

Категория
Категория (от греческого слова kathgorew, обвиняю) - логический иметафизический термин, введённый Аристотелем, ныне употребляемый взначении данном Кантом: К. - априорное понятие рассудка, условиевозможности мышления. В индийской философии, в системе Вайсешика,встречается термин падарта, весьма близкий к Аристотелевому пониманию К.шесть К., приводимых в сочинениях этой школы, тожественны сАристотелевскими, почему и возникло предположение о возможномзаимствовании этого учения греками у индийцев. Но это недопустимо уже похронологическим основаниям, ибо образование различных систем индийскойфилософии в известном теперь виде достоверно относится лишь к началусредних веков. Более чем вероятно обратное предположение - о влияниигреческой философии на индийскую. Аристотель разумеет под К. наиболееобщие понятия, служащие предикатами, выводит их из грамматических форм инасчитывает их 10: субстанция (ousia), количество (poson), качество(poion), отношение (proV ti), где (pou), время (pote), положение(keisJai), обладание (ecein), действие (poiein) и страдание (paocein). Визвестном смысле можно смотреть на пифагорейскую таблицу 10противоположностей, как на попытку перечисления К. (конечное ибесконечное, парное и непарное, единство и множество, свет и тень, благои зло, квадрат и иные фигуры). Аристотелевская таблица К. представляетнесовершенства двоякого рода: случайность выведения (из частей речи) исводимость одних К. к другим. Стоики были правы, когда они вместо десятиАристотелевых принимали лишь четыре: субстанция, качество, модальность иотношение; не хватает здесь только К. количества. Плотин, в первых трёхкнигах шестой "Эннеады", подробно критикует Аристотелеву таблицу ипредлагает свою, которая, однако, в истории не играет никакой роли. Всредние века Раймунд Лулльский (1234 - 1315) пытался перечислитьпринципы или самые общие понятия и самые общие отношения мышления кпредметам. Эти принципы он располагал в виде табличек, причём изразличных комбинаций принципов должны были получаться всевозможные новыеточки зрения. Таким образом его К. должны были служить своего родалогикой открытий. Современное определение термина К. принадлежит Канту.Его учение о четырёх основных, распадающихся как бы на 12 видовых К.,представляет тот же недостаток, что и Аристолево. Кант не выводит К. -формы рассудка - из деятельности рассудка, а берёт их из готовыхсуждений; случайный характер К. и недостаток выведения - вот упрёки,которые делает Канту Фихте. Нужно вывести все К. из высшего их основания- из единства сознания. Задачу эту полнее, чем Фихте, решил в своейлогике Гегель. Под К. Гегель разумеет тоже, что и Кант, толькорешительнее придаёт им метафизический характер. Средством выведения К.служит диалектический метод. Началом процесса образования К. являетсясамое отвлечённое, бедное по содержанию понятие бытия, из которогополучаются сначала К. качества, потом количества и т. п. Из новейшихпопыток преобразования К. внимания заслуживает попытка Милля. См.Trendelenburg, "Gesch. der Kategorienlehre" (Б., 1846). Э. Радлов.

Wikipedia

Fuzzy set

In mathematics, fuzzy sets (a.k.a. uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics (De Cock, Bodenhofer & Kerre 2000), decision-making (Kuzmin 1982), and clustering (Bezdek 1978), are special cases of L-relations when L is the unit interval [0, 1].

In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition—an element either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the indicator functions (aka characteristic functions) of classical sets are special cases of the membership functions of fuzzy sets, if the latter only takes values 0 or 1. In fuzzy set theory, classical bivalent sets are usually called crisp sets. The fuzzy set theory can be used in a wide range of domains in which information is incomplete or imprecise, such as bioinformatics.

Vertaling van &#39fuzzy category&#39 naar Russisch