identification topology - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

identification topology - vertaling naar russisch

TOPOLOGICAL SPACE CONSISTING OF EQUIVALENCE CLASSES OF POINTS IN ANOTHER TOPOLOGICAL SPACE
Quotient topology; Quotient (topology); Quotient map; Identification space; Identification map; Quotient topological space; Gluing (topology); Identifiation map; Hereditarily quotient map
  • For example, <math>[0,1]/\{0,1\}</math> is homeomorphic to the circle <math>S^1.</math>
  • frameless

identification topology      

математика

топология отождествления

indiscrete topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology

математика

антидискретная топология

trivial topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology

математика

тривиальная топология

Definitie

topology
1. <mathematics> The branch of mathematics dealing with continuous transformations. 2. <networking> Which hosts are directly connected to which other hosts in a network. Network layer processes need to consider the current network topology to be able to route packets to their final destination reliably and efficiently. (2001-03-29)

Wikipedia

Quotient space (topology)

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

Intuitively speaking, the points of each equivalence class are identified or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space.

Vertaling van &#39identification topology&#39 naar Russisch