strip manifold - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

strip manifold - vertaling naar russisch

TOPOLOGICAL SPACE THAT AT EACH POINT RESEMBLES EUCLIDEAN SPACE (UNSPECIFIED TYPE)
ManiFold; Manifold with boundary; Manifolds; Boundary of a manifold; Manifold (mathematics); Manifold/rewrite; Pure manifold; Abstract manifold; Abstract Manifold; Manifold/old2; Manifold theory; Manifold (topology); Real manifold; Manifold (Mathematics); Manifold (geometry); 0-manifold; Manifolds with boundary; Two-dimensional manifold; Manifold with corners; Maximal Atlas; Interior of a manifold; Maximal atlas; Manifolds-with-boundary; Manifold-with-boundary
  • Figure 2: A circle manifold chart based on slope, covering all but one point of the circle.
  • Figure 1: The four charts each map part of the circle to an open interval, and together cover the whole circle.
  • #009246}} cubic.
  • The [[Klein bottle]] immersed in three-dimensional space
  • Möbius strip
  • immersion]] used in [[sphere eversion]]
  • North]] and [[South Pole]]s.
  • A finite cylinder is a manifold with boundary.
  • The chart maps the part of the sphere with positive ''z'' coordinate to a disc.
  • 3D color plot of the [[spherical harmonics]] of degree <math>n = 5</math>

strip manifold      

математика

многообразие полос

parallelizability         
A DIFFERENTIABLE MANIFOLD WHOSE (CO)TANGENT BUNDLE IS TOPOLOGICALLY TRIVIAL
Parallelizable; Parallelizability; Framed manifold; Rigged manifold; Absolute parallelism

общая лексика

параллелизуемость

smooth manifold         
MANIFOLD UPON WHICH IT IS POSSIBLE TO PERFORM CALCULUS (ANY DIFFERENTIABLITY CLASS)
Differential manifold; Smooth manifold; Smooth manifolds; Differentiable manifolds; Manifold/rewrite/differentiable manifold; Differental manifold; Sheaf of smooth functions; Geometric structure; Ambient manifold; Non-smoothable manifold; Curved manifold

математика

гладкое многообразие

Definitie

manifold
a.
1.
Numerous, multiplied, multitudinous, various, many.
2.
Various, diverse, multifarious.

Wikipedia

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n {\displaystyle n} -dimensional manifold, or n {\displaystyle n} -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n {\displaystyle n} -dimensional Euclidean space.

One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.

The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g. CT scans).

Manifolds can be equipped with additional structure. One important class of manifolds are differentiable manifolds; their differentiable structure allows calculus to be done. A Riemannian metric on a manifold allows distances and angles to be measured. Symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model spacetime in general relativity.

The study of manifolds requires working knowledge of calculus and topology.

Vertaling van &#39strip manifold&#39 naar Russisch