механика дорожного полотна - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

механика дорожного полотна - vertaling naar frans

ВИД МЕХАНИКИ, ОСНОВАННЫЙ НА ЗАКОНАХ НЬЮТОНА И ПРИНЦИПЕ ОТНОСИТЕЛЬНОСТИ ГАЛИЛЕЯ
Ньютоновская механика; Механика Ньютона; Техническая механика; Ньютоновская динамика; Ньютонова механика
  • Наливное водяное колесо.

механика дорожного полотна      
mécanique de la chaussée
механика разрушения         
Механика разрушения твердых тел; Механика разрушения; Теория трещин
( наука, изучающая условия и виды разрушения твёрдых тел различной формы под действием внешних сил )
mécanique de la rupture
дорожный знак         
ТАБЛИЧКИ, ИНФОРМИРУЮЩИЕ ОБ ОПАСНОСТИ ИЛИ ИЗМЕНЕНИИ ПРАВИЛ ДВИЖЕНИЯ
Дорожные знаки; Знаки дорожного движения; Дорожные знаки и указатели
signe routier

Definitie

КЛАССИЧЕСКАЯ МЕХАНИКА
изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света, в основе лежат Ньютона законы.

Wikipedia

Классическая механика

Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «нью́тоновой меха́никой».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел);
  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин);
  • динамику (которая рассматривает движение тел с учётом вызывающих его причин).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • законы Ньютона;
  • лагранжев формализм;
  • гамильтонов формализм;
  • формализм Гамильтона — Якоби.

На рубеже XIX—XX вв. были выявлены пределы применимости классической механики. Выяснилось, что она даёт исключительно точные результаты, но только в тех случаях, когда применяется к телам, скорости которых много меньше скорости света, а размеры значительно превышают размеры атомов и молекул, и при расстояниях или условиях, когда скорость распространения гравитации можно считать бесконечной (обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика, а на тела, размеры которых сравнимы с атомными, — квантовая механика; квантовые релятивистские эффекты рассматриваются квантовой теорией поля).

Тем не менее, классическая механика сохраняет своё значение, поскольку она:

  1. намного проще в понимании и использовании, чем остальные теории;
  2. в обширном диапазоне достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения очень широкого класса физических объектов: и обыденных предметов макромира (таких, как волчок и бейсбольный мяч), и объектов астрономических размеров (таких, как планеты и звёзды), и многих микроскопических объектов.