Повторный интеграл - definitie. Wat is Повторный интеграл
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Повторный интеграл - definitie


Повторный интеграл         

понятие интегрального исчисления. Вычисление двойного интеграла

(см. Кратный интеграл) от функции f (x, у) по области S, ограниченной прямыми х = а, х = b и кривыми y = φ1(x), у = φ2(х), при некоторых условиях относительно функций f (x, у), φ1(x), φ2(х), производится по формуле:

,

где при вычислении внутреннего интеграла х считается постоянным. Таким образом, вычисление двойного интеграла сводится к двум вычислениям обычных интегралов, или, как говорят, к П. и. Геометрически сведение двойного интеграла к П. и. означает возможность вычисления объёма цилиндроида как путём разбиения его на элементарные столбики, так и путём разбиения его на элементарные слои, параллельные плоскости yOz. При некоторых условиях на функцию f (x, у) область S в П. и. можно изменить порядок интегрирования (то есть сначала интегрировать по х, а потом по у). Аналогично определяется П. и. в случае функций большего числа переменных.

Лит. см. при ст. Интегральное исчисление.

Повторный интеграл         
В многовариантном исчислении повторный интеграл является результатом применения интегралов к функциям более чем одной переменной (например, f(x,y) или f(x,y,z)) таким образом, что каждый из интегралов рассматривает некоторые переменные как заданные константы. Например, функция f(x,y), если y считается заданным параметром, может быть интегрирована относительно x, \int f(x,y)dx. Результат является функцией от y, поэтому её интеграл можно рассматривать. Если это будет сделано, результатом будет повторный интеграл
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ         
ОПЕРАЦИЯ, ОБРАТНАЯ К ПРОИЗВОДНОЙ, - ВОЗВРАЩАЕТ КЛАСС ФУНКЦИЙ
Неопределенный интеграл
см. Интегральное исчисление.

Wikipedia

Повторный интеграл

В многовариантном исчислении повторный интеграл является результатом применения интегралов к функциям более чем одной переменной (например, f ( x , y ) {\displaystyle f(x,y)} или f ( x , y , z ) {\displaystyle f(x,y,z)} ) таким образом, что каждый из интегралов рассматривает некоторые переменные как заданные константы. Например, функция f ( x , y ) {\displaystyle f(x,y)} , если y {\displaystyle y} считается заданным параметром, может быть интегрирована относительно x {\displaystyle x} , f ( x , y ) d x {\displaystyle \int f(x,y)dx} . Результат является функцией от y {\displaystyle y} , поэтому её интеграл можно рассматривать. Если это будет сделано, результатом будет повторный интеграл

( f ( x , y ) d x ) d y . {\displaystyle \int \left(\int f(x,y)\,dx\right)\,dy.}

Ключевым моментом в понятии повторных интегралов является то, что он отличается от кратного интеграла

f ( x , y ) d x d y . {\displaystyle \iint f(x,y)\,dx\,dy.}

В общем, хотя эти два могут быть разными, теорема Фубини утверждает, что при определенных условиях они эквивалентны.

Также используются альтернативное обозначение для повторных интегралов:

d y d x f ( x , y ) {\displaystyle \int dy\int dx\,f(x,y)}

В обозначениях, в которых используются круглые скобки, повторные интегралы вычисляются в соответствии с порядком операций, указанным в скобках, начиная с самого внутреннего интеграла за пределами. В альтернативной записи написания d y d x f ( x , y ) {\textstyle \int dy\,\int dx\,f(x,y)} , в первую очередь вычисляется самое вложенное подынтегральное выражение.