Трансурановые элементы - definitie. Wat is Трансурановые элементы
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Трансурановые элементы - definitie

РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент

Трансурановые элементы         

химические элементы, расположенные в периодической системе элементов (См. Периодическая система элементов) Д. И. Менделеева за Ураном, то есть с атомным номером Z ≥ 93. Известно 14 Т. э. Из-за относительно высокой скорости их радиоактивного распада Т. э. в заметных количествах не сохранились в земной коре. Возраст Земли около 5․109 лет, а Период полураспада T1/2 наиболее долгоживущих изотопов Т. э. меньше 107 лет. За время существования Земли Т. э., возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu - наиболее долгоживущего Т. э. (T1/2 Трансурановые элементы 8․106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 Трансурановые элементы 2,14․106 лет) и 239Pu (T1/2 Трансурановые элементы 2,4․104 лет), которые образуются в результате ядерных реакций с участием ядер U.

Первые Т. э. были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза Т. э. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах (См. Ядерный реактор) или при взрыве ядерных устройств, можно получить все Т. э. до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А, приводящим к β-распаду и увеличению заряда ядра Z, либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой β-распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины - недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.

Элемент с Z = 101 (Менделевий) был открыт в 1955 при облучении 25399Es (эйнштейния) ускоренными α-частицами. Пять элементов с Z > 101 были получены на ускорителях заряженных частиц [циклотрон Объединённого института ядерных исследований (См. Объединённый институт ядерных исследований) (ОИЯИ; Дубна, СССР) и линейный ускоритель тяжёлых ионов "Хайлак" (Беркли, США)] в ядерных реакциях с ускоренными тяжёлыми ионами. Определяющий вклад в эти работы внесли группа учёных под руководством Г. Н. Флёрова (Дубна) и группа Г. Сиборга - А. Гиорсо (Лаборатория им. Лоуренса, Беркли). Существенные результаты были получены также в Окриджской национальной лаборатории США.

Для синтеза далёких Т. э. используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём "испарения" нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения Трансурановые элементы 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для "остывания" составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые "выживают" в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

В ОИЯИ разработан новый метод синтеза Т. э., основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на "распаковку" составного ядра, и энергия возбуждения оказывается низкой (всего 10-15 Мэв). Для снятия возбуждения такой ядерной системы достаточно испарения 1-2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых Т. э. Этим методом был осуществлен синтез Т. э. с Z = 100, Z = 104 и Z = 106.

В 1965 Флёров предложил использовать для синтеза Т. э. вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые Т. э. в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых Т. э.

Т. э. испытывают все виды радиоактивного распада. Однако Электронный захват и β-распад - процессы относительно медленные, и их роль становится небольшой при распаде ядер с Z > 100, имеющих короткие времена жизни относительно α-распада и спонтанного деления. По мере утяжеления элемента конкуренция между спонтанным делением и (β-распадом становится всё более заметной. Нестабильность относительно спонтанного деления, очевидно, определяет границу периодической системы элементов. Если период полураспада для спонтанного деления 92U Трансурановые элементы 1016 лет, для 94Pu Трансурановые элементы 1010 лет, то для 100Fm он измеряется часами, для 104-го элемента - секундами (см. Курчатовий), для 106-го элемента - несколькими мсек. О химических свойствах Т. э. (до Z = 104) и строении их электронных оболочек см. в ст. Актиноиды.

Теоретическое рассмотрение показывает, что возможно существование очень тяжёлых ядер, имеющих повышенную стабильность относительно спонтанного деления и α-распада. "Остров стабильности" должен располагаться вблизи магического ядра (См. Магические ядра), у которого число протонов 114, а число нейтронов 184. Если гипотетическая область стабильности окажется реальной, то границы периодической системы элементов существенно расширятся. Ведутся поиски экспериментальных путей для проникновения в эту область элементов. Получить 114 протонов в новом ядре сравнительно легко, а 184 нейтрона - трудно. Причём отступление от магического числа 184 даже на несколько единиц резко понижает устойчивость ядра к спонтанному делению.

Расчёты барьеров деления и времён жизни сверхтяжёлых элементов привели к выводу, что некоторые сверхтяжёлые элементы могут иметь период полураспада около 108 лет и их микроколичества могли сохраниться на Земле до нашего времени. В 1968 под руководством Флёрова начаты поиски сверхтяжёлых элементов в природе. Исследуются земные минералы, продукты извержения вулканов, геотермальные воды, а также объекты, способные к аккумуляции тяжёлой компоненты космических лучей (См. Космические лучи) (железо-марганцевые конкреции со дна океанов, илы донных отложений озёр и морей, метеориты, породы лунного регалита). Изучают образцы, в которых, согласно теоретическим представлениям, могут содержаться химические элементы с Z > 108. Одновременно ведутся исследования с помощью ускорителей многозарядных ионов.

Лит.: Флёров Г. Н., Звара И., Химические элементы второй сотни. Сообщения ОИЯИ Д7-6013, [Дубна, 1971]: Флёров Г. Н., Поиск и синтез трансурановых элементов, в кн.: Peaceful uses of atomic energy, N. Y. - Vienna, v. 7, 1972, p. 471; Радиоактивные элементы Po - (Ns) - ..., под ред. И. В. Петрянова-Соколова, М., 1974.

Г. Н. Флёров, В. А. Друин.

ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ         
химические элементы, расположенные в периодической системе после урана, т. е. с атомным номером Z ??93. Известно 17 трансурановых элементов. Все они синтезированы с помощью ядерных реакций (в природе обнаружены только микроколичества Np и Pu). Трансурановые элементы радиоактивны; с увеличением Z период полураспада трансурановых элементов резко уменьшается (от 8·107 лет для 244Pu до мс для элементов c Z=106-109).
Трансурановые элементы         
Трансура́новые элеме́нты (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И.

Wikipedia

Трансурановые элементы

Трансура́новые элеме́нты (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером выше 92.

Элементы с атомным номером более 100 называются сверхтяжёлыми элементами или трансфермиевыми элементами. Одиннадцать из известных трансурановых элементов (93—103) принадлежат к числу актиноидов. Трансурановые элементы с атомным номером более 103 называются трансактиноидами, более 120 — суперактиноидами. Иногда к сверхтяжёлым элементам относят только трансактиноиды (Z > 103), не включая в их число тяжёлые актиноиды (Z > 100).

Все известные изотопы трансурановых элементов имеют период полураспада значительно меньший, чем возраст Земли. Поэтому, хотя теории Острова стабильности и т. н. магических ядер оболочечного строения допускают возможность долгоживущего и стабильного существования даже сверхтяжёлых трансактиноидов, известные трансурановые элементы практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Элементы до фермия включительно образуются в ядерных реакторах в результате захвата нейтронов и последующего бета-распада.

Трансфермиевые элементы образуются только в результате слияния ядер. Для их производства бомбардируют ядра-мишени тяжёлых элементов ядрами-снарядами, полученными на ускорителях.

Первый из трансурановых элементов нептуний Np (порядковый номер 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Pu, п.н. 94), америция (Am, п.н. 95), кюрия (Cm, п.н. 96), берклия (Bk, п.н. 97), калифорния (Cf, п.н. 98), эйнштейния (Es, п.н. 99), фермия (Fm, п.н. 100), менделевия (Md, п.н. 101), нобелия (No, п.н. 102) и лоуренсия (Lr, п.н. 103). По состоянию на 2016 г., синтезированы также трансактиноиды с порядковыми номерами 104—118: резерфордий (Rf, 104), дубний (Db, 105), сиборгий (Sg, 106), борий (Bh, 107), хассий (Hs, 108), мейтнерий (Mt, 109), дармштадтий (Ds, 110), рентгений (Rg, 111), коперниций (Cn, 112), нихоний (Nh, 113), флеровий (Fl, 114), московий (Mc, 115), ливерморий (Lv, 116), теннессин (Ts, 117), оганесон (Og, 118). Также предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов, в том числе были заявления о синтезе элемента унбиквадий (124) и косвенных свидетельствах о элементах унбинилий (120) и унбигексий (126), которые пока не подтверждены.

Химические свойства лёгких трансурановых актиноидов, получаемых в весовых количествах, изучены более или менее полно; трансфермиевые элементы (Md, No, Lr и так далее) изучены слабо в связи с трудностью получения и короткими временами жизни. Кристаллографические исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств показали, что элементы с п.н. 93—103 — аналоги лантаноидов. Из всех трансурановых элементов наибольшее применение нашёл нуклид плутония 239Pu как ядерное топливо.

Первые трансурановые элементы были синтезированы в начале 40-х годов XX века в Национальной лаборатории имени Лоуренса в Беркли (США) группой учёных под руководством Эдвина Макмиллана и Глена Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Синтезирование новых трансурановых элементов и изотопов проводилось и продолжается также в Ливерморской национальной лаборатории в США, Объединённом институте ядерных исследований в СССР/России (Дубна), Европейском Центре по изучению тяжёлых ионов имени Гельмгольца в Германии, Институте физико-химических исследований в Японии и других лабораториях. В последние десятилетия над синтезом элементов в американских, немецком и российском центрах работают международные коллективы.

Поиски сверхтяжёлых трансурановых элементов в природе пока не увенчались успехом. Обнаружение в землях Челекена элемента сергения (108) в начале 1970-х гг. подтверждено не было. В 2008 году было объявлено об обнаружении элемента экатория-унбибия (122) в образцах природного тория, однако это заявление в настоящее время оспаривается на основании последних попыток воспроизведения данных с использованием более точных методов. В 2011 году российские учёные сообщили об открытии в метеоритном веществе следов столкновений с частицами с атомными числами от 105 до 130, что может являться косвенным доказательством существования стабильных сверхтяжёлых ядер.

Voorbeelden uit tekstcorpus voor Трансурановые элементы
1. Именно через них трансурановые элементы могут попасть в воду, а затем - в организм человека.
2. Потому надо работать вместе". Далее я им предлагаю вместе написать книгу "Трансурановые элементы". Внимательно меня слушают, задают вопросы.
3. Трансурановые элементы существуют мгновения, но именно они могут дать ответы на самые фундаментальные вопросы мироздания и параллельно обеспечить стране технологическое превосходство.
4. Именно радиоактивно загрязненные трубы являются своеобразным "проводником" радиации в организм человека: трансурановые элементы (америций, уран-238, уран-235 и др.) в виде мельчайших частиц металла, отколовшихся от трубы, могут попасть в употребляемую людьми воду.
5. -А вот где-то здесь,-палец ученого ткнул куда-то в район "северо-востока",-и находятся "островки стабильности". В этом месте могут находиться сверхтяжелые, еще не открытые трансурановые элементы, число протонов и нейтронов в ядрах которых окажется магическим, то есть обеспечивающим стабильность элемента.
Wat is Трансур<font color="red">а</font>новые элем<font color="red">е</font>нты - definition