ЦИКЛ УГЛЕРОДА - definitie. Wat is ЦИКЛ УГЛЕРОДА
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is ЦИКЛ УГЛЕРОДА - definitie

КОМПЛЕКС ПРОЦЕССОВ, В ХОДЕ КОТОРЫХ ПРОИСХОДИТ ПЕРЕНОС УГЛЕРОДА МЕЖДУ РАЗЛИЧНЫМИ ГЕОХИМИЧЕСКИМИ РЕЗЕРВУАРАМИ
Биогеохимический цикл углерода; Глобальный баланс углерода; Круговорот углерода
  • Схема геохимического цикла углерода показывает количество углерода в атмосфере, гидросфере и геосфере Земли, а также годовой перенос углерода между ними. Все величины в гигатоннах (миллиардах тонн). В результате сжигания ископаемого топлива человечество ежегодно добавляет 5,5 гигатонн углерода в атмосферу
  • в атмосфере]] в фанерозое и расчеты по различным геохимическим моделям

ЦИКЛ УГЛЕРОДА      
круговорот углерода, - циклическое перемещение углерода между миром живых существ и неорганическим миром атмосферы, морей, пресных вод, почвы и скал. Это один из важнейших биогеохимических циклов, включающий множество сложных реакций, в ходе которых углерод переходит из воздуха и водной среды в ткани растений и животных, а затем возвращается в атмосферу, воду и почву, становясь снова доступным для использования организмами. Поскольку углерод необходим для поддержания любой формы жизни, всякое вмешательство в круговорот этого элемента влияет на количество и разнообразие живых организмов, способных существовать на Земле.
Источники и резервы углерода. Основной источник углерода для живых организмов - это атмосфера Земли, где данный элемент присутствует в виде диоксида углерода (углекислого газа, СО2). В течение многих миллионов лет концентрация СО2 в атмосфере, по-видимому, существенно не менялась, составляя ок. 0,03% веса сухого воздуха на уровне моря. Хотя доля СО2 невелика, его абсолютное количество поистине огромно - ок. 750 млрд. т. В атмосфере СО2 переносится ветрами как в вертикальном, так и в горизонтальном направлениях.
Диоксид углерода присутствует в воде, где он легко растворяется, образуя слабую угольную кислоту Н2СО3. Эта кислота вступает в реакции с кальцием и другими элементами, образуя минералы, называемые карбонатами. Карбонатные породы, например известняк, находятся в равновесии с диоксидом углерода, который содержится в контактирующей с ними воде. Аналогичным образом количество СО2, растворенного в океанах и пресных водах, определяется его концентрацией в атмосфере. Общее количество растворенных и осадочных углеродсодержащих веществ оценивается примерно в 1,8 трлн. т.
Углерод в соединении с водородом и другими элементами является одним из основных компонентов клеток растений и животных. Например, в организме человека он составляет ок. 18% массы тела. Многочисленность и очень широкое распространение живых организмов не позволяют удовлетворительно оценить общее содержание в них углерода. Можно, однако, приблизительно оценить суммарное количество углерода, связываемого растениями, а также выделяемого в процессе дыхания растений, животных и микроорганизмов. Установлено, что зеленые растения поглощают в год ок. 220 млрд. т CO2. Почти такое же количество этого вещества выделяется в неорганическую среду в процессе дыхания всех живых организмов, а также в результате разложения и сгорания органических веществ.
При определенных условиях разложения и сгорания созданных живыми организмами веществ не происходит, что ведет к накоплению углеродсодержащих соединений. Так, например, древесина живых деревьев может быть на 3-4 тысячелетия надежно защищена от микробного разложения и от пожара корой, способной противостоять действию микробов и огня. Древесина же, попавшая в торфяное болото, сохраняется еще дольше. В обоих случаях связанный в ней углерод оказывается как бы в ловушке и надолго выводится из круговорота. В условиях, когда органическое вещество оказывается захороненным и изолированным от воздействия воздуха, оно разлагается только частично и содержащийся в нем углерод сохраняется. Если впоследствии в течение миллионов лет эти органические остатки подвергаются давлению вышележащих отложений и нагреванию за счет земного тепла, значительная часть его превращается в ископаемое топливо, например в каменный уголь или нефть. Ископаемое топливо образует природный резерв углерода. Несмотря на интенсивное его сжигание, начавшееся с 1700-х годов, неизрасходованными еще остаются примерно 4,5 трлн. т.
Фотосинтез. Основной путь, посредством которого углерод из мира неорганического перемещается в мир живого, - это осуществляемый зелеными растениями фотосинтез. Данный процесс представляет собой цепь реакций, в ходе которых растения поглощают из атмосферы или воды диоксид углерода, связывая его молекулы с молекулами специального вещества - акцептора СО2. В ходе других реакций, идущих с потреблением солнечной (световой) энергии, происходит расщепление молекул воды и использование высвобождающихся ионов водорода и связанного СО2 в синтезе богатых углеродом органических веществ, в том числе акцептора СО2.
На каждую молекулу СО2, которую поглощает растение, чтобы синтезировать органические вещества, выделяется молекула кислорода, образованная при расщеплении воды. Предполагается, что именно таким путем образовался весь свободный кислород атмосферы. Если бы процесс фотосинтеза на Земле внезапно прекратился и нарушился углеродный цикл, то, согласно имеющимся расчетам, весь свободный кислород исчез бы из атмосферы примерно за 2000 лет. См. также ФОТОСИНТЕЗ
.
Другие реакции. Зеленое растение использует углерод образуемых им органических веществ разными способами. Например, он может накапливаться в составе крахмала, запасаемого в клетках, или целлюлозы - основного структурного материала растений и питательного вещества для многих других организмов. И крахмал и целлюлоза усваиваются в качестве пищи только после расщепления на составляющие их 6-углеродные сахара (т.е. сахара, содержащие по шесть атомов углерода в молекуле). В отличие от крахмала - нерастворимого высокомолекулярного соединения - 6-углеродные сахара легко растворимы и, перемещаясь по растению, служат источником энергии и материалом для роста и обновления клеток, а также для их восстановления в случае повреждений. Проростки, например, расщепляют запасенные в семени крахмал и жиры, получая из них более простые органические вещества, используемые в процессе клеточного дыхания (для высвобождения их энергии) и для роста.
У животных поглощенная пища подвергается аналогичному процессу переваривания. Прежде чем ее основные компоненты могут быть усвоены, они должны быть преобразованы: углеводы - в 6-углеродные сахара, жиры - в глицерин и жирные кислоты, белки - в аминокислоты. Эти продукты переваривания служат животному источниками энергии, высвобождаемой при дыхании, а также строительными блоками, необходимыми для роста организма и обновления его компонентов. Подобно растениям, животные способны переводить питательные вещества в форму, удобную для запасания. Аналог крахмала у животных - это гликоген, образуемый из излишков 6-углеродных сахаров и накапливаемый в качестве энергетического резерва в печени и мышечных клетках. Избыток сахара может превращаться также в жирные кислоты и глицерин, которые вместе с такими же веществами, поступающими с пищей, используются для синтеза жиров, накапливаемых в ткани. Таким образом, процессы синтеза обеспечивают запасание богатых углеродом и связанной энергией веществ, что позволяет организму выживать в периоды нехватки пищи.
Одна из характерных особенностей всего живого - постоянная потребность в энергии. Организм получает энергию посредством дыхания - целой серии процессов, в ходе которых сложные углеродсодержащие молекулы превращаются в простые. Большинство растений и животных способно только к аэробному дыханию, т.е. они поглощают кислород из воздуха, образуя диоксид углерода и воду в качестве конечных продуктов. Однако существуют некоторые бактерии, простейшие и даже многоклеточные животные (кишечные паразиты), являющиеся анаэробами: они способны жить в отсутствие кислорода в среде; при этом конечными продуктами их анаэробного дыхания (брожения разных типов) тоже служит диоксид углерода и вода. Очень немногие организмы (например, дрожжи) могут быть как аэробами, так и анаэробами. В аэробных условиях дрожжи образуют в качестве конечных продуктов диоксид углерода и воду, а в анаэробных - диоксид углерода и этиловый спирт. Таким образом, независимо от типа дыхания оно всегда ведет к высвобождению углерода в форме диоксида, который затем снова вовлекается в глобальный цикл.
После своей смерти растения и животные становятся пищей для т.н. редуцентов - организмов, осуществляющих разложение органического вещества. Большая часть редуцентов представлена бактериями и грибами, клетки которых выделяют наружу, в свое непосредственное окружение, небольшие количества пищеварительной жидкости, расщепляющей субстрат, а затем потребляют продукты такого "переваривания". Как правило, редуценты имеют ограниченный набор ферментов и соответственно используют в качестве пищи и источника энергии только немногие типы органических веществ. Обычные дрожжи, например, перерабатывают только 6- и 12-углеродные сахара, содержащиеся в разрушенных клетках перезрелых фруктов или в густом (с мякотью) соке, полученном при их раздавливании. Однако при достаточной длительности воздействия разнообразных редуцентов все углеродсодержащие вещества растений или животных в конце концов разрушаются до диоксида углерода и воды, а высвобожденная энергия используется организмами, осуществляющими разложение. Многие искусственно синтезированные органические соединения тоже подвержены биологическому разрушению (биодеградации) - процессу, в ходе которого редуценты получают энергию и необходимый строительный материал, а в атмосферу выделяется углерод в форме диоксида углерода.
Геохимический цикл углерода         
Геохимический цикл углерода — это комплекс процессов, в ходе которых происходит перенос углерода между различными геохимическими резервуарами. В истории Земли углеродный цикл менялся весьма значительно, эти изменения были как и медленными постепенными изменениями, так и резкими катастрофическими событиями.
УГЛЕРОДА ОКСИД         
  • 600x17px
  • 600x17px
  • 600x17px
  • 600x62px
  • 600x115px
  • 600x17px
Оксид углерода; Углерода оксид; Оксокарбоны
(угарный газ) , СО, газ без цвета и запаха, плотность 1,25 г/л, tкип -191,5 °С. Образуется при неполном сгорании углерода или его соединений (в печах, двигателях внутреннего сгорания). На воздухе горит синим пламенем (2СО + О2 = 2СО2). В промышленности получают газификацией топлив, при конверсии газов. Сырье основного органического синтеза, высококалорийное топливо. Углерода оксид ядовит.

Wikipedia

Геохимический цикл углерода

Геохимический цикл углерода — это комплекс процессов, в ходе которых происходит перенос углерода между различными геохимическими резервуарами. В истории Земли углеродный цикл менялся весьма значительно, эти изменения были как и медленными постепенными изменениями, так и резкими катастрофическими событиями. Важнейшую роль в круговороте углерода играли и играют живые организмы. В различных формах углерод присутствует во всех оболочках Земли.

Геохимический цикл углерода имеет несколько важных особенностей:

  • В разное время разные процессы были определяющими в углеродном цикле.
  • Резкие, катастрофические изменения цикла углерода играли ключевую роль в эволюции углеродного цикла в истории Земли.
  • Геохимический цикл углерода всегда происходит через атмосферу и гидросферу. Тем самым, даже самые глубинные процессы могут влиять на окружающую среду и биосферу.

Геохимическая запись углеродного цикла изучена неравномерно по геологической шкале времён. Наиболее полно в этом отношении изучен четвертичный период, самый недавний и кратчайший геологический период, так как, с одной стороны, история углеродного цикла в нём наиболее полно зафиксирована ледниками Арктики и Антарктики. С другой стороны, в это время происходили значительные изменения углеродного цикла, и они неразрывно связаны с климатическими изменениями.

При изучении изменений в геохимических циклах элементов необходимо учитывать временной масштаб явлений. Одни процессы могут привносить малозаметные изменения, которые на длительных геологических промежутках времени становятся решающими. Иные изменения могут носить катастрофический характер, и происходить за очень короткие времена. При этом понятие времени характеристики «долго» и «медленно» в этом контексте относительны. Примером мгновенного в геологической шкале времени события в геохимическом цикле углерода является позднепалеоценовый термальный максимум.

Voorbeelden uit tekstcorpus voor ЦИКЛ УГЛЕРОДА
1. В Ханты-Мансийске в конце августа состоялся II международный симпозиум "Западно-сибирские торфяники и цикл углерода: прошлое и настоящее". По словам гендиректора Сибирского научно-исследовательского и проектного института рационального природопользования (г.
2. Но на II международном симпозиуме "Западно- сибирские торфяники и цикл углерода: прошлое и настоящее", который по инициативе Югорского государственного университета и Института почвоведения и агрохимии Сибирского отделения Российской академии наук в эти дни проходит в Ханты-Мансийске, ученые совершенно иначе рассматривают роль болот в угрожающем Земле глобальном потеплении.
3. Югра стала международной площадкой для изучения роли болот в углеводородном балансе планеты В столице Ханты-Мансийского автономного округа под эгидой ЮНЕСКО проходит Второй международный полевой симпозиум "Западно-сибирские торфяники и цикл углерода: прошлое и настоящее". Организованный по инициативе югорских и новосибирских ученых при поддержке правительства региона, он привлек к участию известных международных и российских исследователей.
Wat is ЦИКЛ УГЛЕРОДА - definition