кватернион - definitie. Wat is кватернион
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is кватернион - definitie

СИСТЕМА ГИПЕРКОМПЛЕКСНЫХ ЧИСЕЛ, ОБРАЗУЮЩАЯ ВЕКТОРНОЕ ПРОСТРАНСТВО РАЗМЕРНОСТЬЮ ЧЕТЫРЕ НАД ПОЛЕМ ВЕЩЕСТВЕННЫХ ЧИСЕЛ
Кватернионы; Целые кватернионы; Алгебра кватернионов; ℍ; Тело кватернионов
  • трёх степеней свободы]], но окончательная свобода меньших колец зависит от положения больших колец
  • Уильям Роуэн Гамильтон]] открыл формулу перемножения кватернионов»<ref>В письме своему сыну Арчибальду от 5 августа 1865 года Гамильтон пишет: «…Но, конечно, надпись уже стёрлась» (''Л. С. Полак'' Вариационные принципы механики, их развитие и применение в физике.— М.: Физматгиз, 1960.— С.103-104)</ref></center>

КВАТЕРНИОН         
(от лат. quaterni - по четыре), обобщение понятия комплексного числа. Кватернион имеет вид: a+bi+cj+dk, где a, b, c, d - действительные числа, а i, j, k - три специальные единицы, аналогичные мнимой единице. Для кватерниона справедливы все основные законы действий, кроме коммутативности умножения.
Кватернион         
Кватернио́ны (от , по четыре) — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел.
Кватернионы         
(от лат. quaterni - по четыре)

система чисел, предложенная в 1843 англ. учёным У. Гамильтоном. К. возникли при попытках найти обобщение комплексных чисел (См. Комплексные числа) х + iy, где х и у- действительные числа, i - базисная единица с условием i2 = -1. Как известно, комплексные числа изображаются геометрически точками плоскости, и действия над ними соответствуют простейшим геометрическим преобразованиям плоскости (сдвигу, вращению, растяжению или сжатию и их комбинациям). Поиски числовой системы, которая геометрически реализовалась бы с помощью точек 3-мерного пространства, привели к установлению того, что из точек пространства трёх и выше трёх измерений нельзя "устроить" числовую систему, в которой алгебраические операции сохраняли бы все свойства сложения и умножения действительных или комплексных чисел. Однако если отказаться от одного свойства - коммутативности (переместительности) умножения, - сохранив все остальные свойства сложения и умножения, то из точек пространства четырех измерений можно устроить числовую систему (в пространстве трех, пяти и даже выше измерений нельзя устроить даже такой системы чисел). Числа, реализуемые в 4-мерном пространстве и называются кватернионами. К. представляют собой линейную комбинацию четырёх "базисных единиц" 1, i, j, k: X=xo (1+x1+x2j+x3k, где хо, х1, x2, х3 - действительные числа. Действия над К. производятся по обычным правилам действия над многочленами относительно 1, i, j, k (нельзя лишь пользоваться переместительным законом умножения) с учётом правил умножения базисных единиц, указанных в таблице

--------------------------------------------

| | 1 | i | j | k |

|-------------------------------------------|

| 1 | 1 | i | J | k |

|-------------------------------------------|

| I | i | -1 | k | -j |

|-------------------------------------------|

| j | j | -k | -1 | i |

|-------------------------------------------|

| k | k | J | -i | Кватернионы! |

--------------------------------------------

Из таблицы видно, что 1 играет poль обычной единицы и, следовательно, в записи К. может быть опущена:

X=xo+x1i+x2j+x3k.

(1)

В К. (1) различают скалярную часть хо и векторную часть

V= x1i +x2j+x3k, так что X=xo+V.

Если хо = 0, то кватернион V наз. вектором; он может отождествляться с обычными 3-мерными Векторами.

В середине 19 в. К. воспринимались как обобщение понятия о числе, призванное играть в науке столь же значительную роль, как и комплексные числа. Эта точка зрения подкреплялась и тем, что были найдены приложения К. к электродинамике и механике. Однако Векторное исчисление в его современной форме вытеснило К. из этих областей. Ясно, что роль К. ни в какой мере не может быть сравнима с ролью комплексных чисел, имеющих многочисленные и разнообразные приложения в различных отраслях науки и техники.

Лит.: см. при ст. Гиперкомплексные числа.

Таблица к ст. Кватернионы.

Wikipedia

Кватернион

Кватернио́ны (от лат. quaterni, по четыре) — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом H {\displaystyle \mathbb {H} } . Предложены Уильямом Гамильтоном в 1843 году.

Кватернионы удобны для описания изометрий трёх- и четырёхмерного евклидовых пространств и поэтому получили широкое распространение в механике. Также их используют в вычислительной математике — например, при создании трёхмерной графики.

Анри Пуанкаре писал о кватернионах: «Их появление дало мощный толчок развитию алгебры; исходя от них, наука пошла по пути обобщения понятия числа, придя к концепциям матрицы и линейного оператора, пронизывающим современную математику. Это была революция в арифметике, подобная той, которую сделал Лобачевский в геометрии».

Voorbeelden uit tekstcorpus voor кватернион
1. Прозвучит и "Кватернион" для четырех виолончелей Губайдулиной, и опусы Моцарта, Телемана, Хиндемита, и радикальный для своего времени (1'50-е) Октет для четырех скрипок, двух гобоев, литавр и фортепиано Галины Уствольской.
2. В вечере "Монотония" вершинными стали "Кватернион" Губайдулиной для четырех виолончелей, модернистский Октет Уствольской и Вариации на тему Гайдна немецкого фаготиста Карла Кольбингера в исполнении Квартета фаготов БСО. (Увы, объем заметки не позволяет перечислить имена всех участников.) В "Концерте по заявкам" особенно отличились Борис Андрианов с Импровизацией для виолончели соло Альфреда Шнитке, ASCH-трио (Роман Минц, Максим Рысанов и Кристина Блаумане), преподнесшее новинку от болгарского композитора Добринки Табаковой; Дмитрий Булгаков с Александром Кобриным, исполнившие загадочные Temporal Variations Бриттена, и Екатерина Апекишева, удостоенная бешеных оваций за "Аргентинские танцы" Хинастеры.
Wat is КВАТЕРНИОН - definition