конечно-порождённый - definitie. Wat is конечно-порождённый
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is конечно-порождённый - definitie

Конечно-разностная схема

Разностная схема         
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например, краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах.
Конечно порождённое расширение         
Коне́чно порождённое расшире́ние по́ля K — расширение E поля K, такое, что в E существуют элементы \alpha_1, \dots, \alpha_n такие, что E=K(\alpha_1, \ldots, \alpha_n). Элементы E суть алгебраические дроби \frac{f(\alpha_1,\dots,\alpha_n)}{g(\alpha_1,\ldots,\alpha_n)}, где f и g — многочлены.
порожденный         
  • Кадр из фильма. Рождение Матери Земли
  • Обложка альбома Sounds of Decay группы Katatonia.
ФИЛЬМ ЭДМУНДА ЭЛИАСА МЕРИДЖА 1990 ГОДА
Порожденный; Единородный; Begotten
ПОРОЖДЁННЫЙ, порождённая, порождённое; порождён, порождена, порождено. прич. страд. прош. вр. от породить
.

Wikipedia

Разностная схема

Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например, краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные в соответствие дифференциальному уравнению, получаются применением разностного метода, что отличает теорию разностных схем от других численных методов решения дифференциальных задач (например проекционных методов, таких как метод Галёркина).

Решение разностной схемы называется приближенным решением дифференциальной задачи.

Хотя формальное определение не накладывает существенных ограничений на вид алгебраических уравнений, но на практике имеет смысл рассматривать только те схемы, которые каким-либо образом отвечают дифференциальной задаче. Важными понятиями теории разностных схем являются понятия сходимости, аппроксимации, устойчивости, консервативности.

Wat is Разностная схема - definition