Álgebra lineal - definitie. Wat is Álgebra lineal
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Álgebra lineal - definitie


Espacio cociente (álgebra lineal)         
En álgebra lineal, el espacio vectorial cociente E/F de un espacio vectorial E por un subespacio vectorial F, es la estructura natural de espacio vectorial sobre el conjunto cociente de E por la siguiente relación de equivalencia: v está relacionado con w si y solo si v-w pertenece a F.
Invariante algebraico (álgebra lineal)         
Un invariante algebraico es una función polinómica de los componentes de la matriz de una aplicación lineal, no depende de la base vectorial escogida para representar la aplicación lineal en forma de matriz. En otras palabras, un invariante algebraico es una cierta combinación de los componentes de una matriz cuyo valor numérico no queda alterado al hacer un cambio de base, y de ahí el nombre de invariante.
C*-álgebra         
En matemáticas, especialmente en análisis funcional, una C*-álgebra (pronunciado "C estrella álgebra") es un álgebra de Banach con una involución satisfaciendo propiedades similares a las de los operadores adjuntos. Un caso particular es el de un álgebra compleja A de operadores lineales continuos sobre un espacio de Hilbert \mathcal{H} junto a dos propiedades adicionales:

Wikipedia

Álgebra lineal

El álgebra lineal es una rama de las matemáticas que estudia conceptos tales como vectores, matrices, espacio dual, sistemas de ecuaciones lineales y en su enfoque de manera más formal, espacios vectoriales y sus transformaciones lineales.

Dicho de otra forma, el Álgebra lineal es la rama de las matemáticas que se ocupa de las ecuaciones lineales como:

a 1 x 1 + + a n x n = b , {\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}=b,}

y aplicaciones lineales tales como:

( x 1 , , x n ) a 1 x 1 + + a n x n , {\displaystyle (x_{1},\ldots ,x_{n})\mapsto a_{1}x_{1}+\cdots +a_{n}x_{n},}

y sus representaciones en espacios vectoriales y a través de matrices.[1][2][3]

El álgebra lineal es fundamental en casi todas las áreas de las matemáticas. Por ejemplo, el álgebra lineal es fundamental en las presentaciones modernas de la geometría, incluso para definir objetos básicos como líneas, planos y rotaciones. Además, el análisis funcional, una rama del análisis matemático, puede considerarse básicamente como la aplicación del álgebra lineal al espacios de funciones.

El álgebra lineal también se utiliza en la mayoría de las ciencias y campos de la ingeniería, porque permite modelar muchos fenómenos naturales, y computar eficientemente con dichos modelos. Para los sistemas no lineales, que no pueden ser modelados con el álgebra lineal, se utiliza a menudo para tratar la aproximaciones de primer orden, utilizando el hecho de que la diferencial de una 'función multivariante' en un punto es el mapa lineal que mejor aproxima la función cerca de ese punto así como el análisis funcional, las ecuaciones diferenciales, la investigación de operaciones, las gráficas por computadora, la ingeniería entre otras más.

La historia del álgebra lineal moderna se remonta a 1843, cuando William Rowan Hamilton (de quien proviene el uso del término vector) creó los cuaterniones inspirado en los números complejos;[4]​ y a 1844, cuando Hermann Grassmann publicó su libro Die lineare Ausdehnungslehre (La teoría lineal de extensión)[5]​.

Wat is Espacio cociente (álgebra lineal) - definition