Interleucina-1 ( ) - tradução para português
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

Interleucina-1 ( ) - tradução para português

SÉRIE DIVERGENTE
1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …
  • acessodata=30 de janeiro de 2014}}</ref>

Interleucina-1 (interleucina produzida por macrófago que induz os linfócitos T estimulados imunologicamente a produzirem interleucina-2)      
интерлейкин-1 (интерлейкин, производимый макрофагом, который побуждает лимфоциты-Т, находящиеся под воздействием иммунологических раздражителей, вырабатывать интерлейкин-2)
UM         
NÚMERO NATURAL
1 (unidade); 1 (número); 01
União para a Mudança
um         
NÚMERO NATURAL
1 (unidade); 1 (número); 01
единица, (num.) один, первый, единственный, неделимый, некий, какой-то, какой-нибудь

Definição

Церера
I Цере́ра

в древнеримской мифологии богиня земледелия и плодородия. Ей был посвящен храм на Авентинском холме, где Ц. почиталась вместе с др. италийскими растительными божествами Либером и Либерой. В честь Ц. в Риме справлялся 19 апреля праздник цереалий. Ц. соответствует древнегреческой богине Деметре (См. Деметра).

II Цере́ра

малая планета № 1, открыта Дж. Пиацци 1 января 1801. Ц. - первая по времени открытия и самая крупная малая планета. Диаметр Ц. 770 км, среднее расстояние от Солнца 2,77 а. е., период обращения 4,6 года, средняя Звёздная величина в противостоянии 7,4. Фотоэлектрическими наблюдениями обнаружены незначительные колебания блеска с амплитудой 0,04 звёздной величины и периодом 9 ч 5 мин. См. Малые планеты.

Wikipédia

1 + 1 + 1 + 1 + ⋯

Em matemática, 1 + 1 + 1 + 1 + · · ·, também escrita como n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , ou simplesmente n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , é uma série divergente, significando que sua sequência de somas parciais não converge para um limite dentro dos números reais. A sequência 1n pode ser pensada como uma série geométrica com a razão igual a 1. Diferente de outras séries geométricas com uma razão racional (exceto -1), ela não converge nem dentro dos números reais e nem dentro dos número p-ádicos para algum p. No contexto da reta de números reais estendida,

já que a sua sequência de somas parciais cresce monotonicamente sem limite.

Onde a soma de n0 ocorre em aplicações físicas, às vezes ela pode ser interpretada através da regularização da função zeta. Ela é o valor da função zeta de Riemann em s=0

No entanto, as duas fórmulas dadas acima não são válidas em zero, sendo então necessário utilizar a extensão analítica das funções zetas de Riemann,Usando isso obtêm-se (dado que Γ ( 1 ) = 1 {\displaystyle \Gamma (1)=1} ), ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}\!}

em que a expansão em série de potências para ζ(s) em s = 1 é válida pois ζ(s) tem um polo simples de resíduo 1 nesse ponto. Neste sentido, 1 + 1 + 1 + 1 + · · · = ζ(0) = −12.

Emilio Elizalde apresenta uma anedota relacionada as atitudes frente as séries:

Em um curto período menor do que um ano, dois distintos físicos, A. Slavnov and F. Yndurain, deram um seminário em Barcelona, sobre diferentes assuntos. Foi memorável que, em ambas apresentações, em dado momento o orador falou a plateia essas palavras: 'Como todos sabem, 1 + 1 + 1 + · · · = −12'. Significando talvez: Se você não sabe isso, não faz sentido continuar ouvindo.