характерный признак старения - tradução para francês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

характерный признак старения - tradução para francês

ПРИЗНАК СХОДИМОСТИ ЧИСЛОВЫХ РЯДОВ
Признак сходимости Д'Аламбера; Признак сходимости Д’Аламбера; Признак сходимости д’Аламбера; Признак Даламбера; Признак Д'Аламбера; Признак Д’Аламбера

характерный признак старения      
mode de vieillissement particulier
свойство         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
с.
propriété , nature ; naturel m ; caractéristiques ; trait ( черта )
главное ее свойство - терпение - sa vertu première est la patience
свойства         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
propriétés

Definição

ДИФФЕРЕНЦИАЛЬНЫЙ ПРИЗНАК
элемент или свойство языковой единицы (напр., фонемы), на котором основывается ее противопоставление другой единице того же уровня.

Wikipédia

Признак д’Аламбера

При́знак д’Аламбе́ра (или Признак Даламбера) — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.

Если для числового ряда

n = 0 a n {\displaystyle \sum _{n=0}^{\infty }a_{n}}

существует такое число q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что, начиная с некоторого номера, выполняется неравенство

| a n + 1 a n | q , {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q,}

то данный ряд абсолютно сходится; если же, начиная с некоторого номера

| a n + 1 a n | 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\geqslant 1} ,

то ряд расходится.

Если же, начиная с некоторого номера, | a n + 1 a n | < 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|<1} , при этом не существует такого q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что | a n + 1 a n | q {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q} для всех n {\displaystyle n} , начиная с некоторого номера, то в этом случае ряд может как сходиться, так и расходиться.