absorption wave meter - tradução para grego
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

absorption wave meter - tradução para grego

THEOREM
Absorption identities; Absorption Identities; Absorption Law; Absorption laws; Absorption identity

absorption wave meter      
επαγωγικό κυματόμετρο, λόγος απορροφήσεως νατρίου
λόγος απορροφήσεως νατρίου      
absorption wave meter
επαγωγικό κυματόμετρο      
absorption wave meter

Definição

exposure meter
¦ noun Photography a light meter.

Wikipédia

Absorption law

In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations.

Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if:

a ¤ (ab) = a ⁂ (a ¤ b) = a.

A set equipped with two commutative and associative binary operations {\displaystyle \scriptstyle \lor } ("join") and {\displaystyle \scriptstyle \land } ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent.

Examples of lattices include Heyting algebras and Boolean algebras, in particular sets of sets with union and intersection operators, and ordered sets with min and max operations.

In classical logic, and in particular Boolean algebra, the operations OR and AND, which are also denoted by {\displaystyle \scriptstyle \lor } and {\displaystyle \scriptstyle \land } , satisfy the lattice axioms, including the absorption law. The same is true for intuitionistic logic.

The absorption law does not hold in many other algebraic structures, such as commutative rings, e.g. the field of real numbers, relevance logics, linear logics, and substructural logics. In the last case, there is no one-to-one correspondence between the free variables of the defining pair of identities.