exterior$26902$ - tradução para holandês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

exterior$26902$ - tradução para holandês

IN DIFFERENTIAL GEOMETRY, A DIFFERENTIAL OPERATION DEFINED IN DIFFERENTIAL FORMS THAT INCREASES THE FORM DEGREE BY 1
Exterior differentiation; Invariant formula for exterior derivative

exterior      
n. exterieur
interior angles         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
binnenste hoeken (hoeken binnen een meetkundige vorm)
exterior angle         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
buitenhoek (hoek met samenvallend uitgangspunt met de geometrische vorm buiten de vorm vallend)

Definição

Exterior Gateway Protocol
(EGP) A protocol which distributes routing information to the routers which connect autonomous systems. The term "gateway" is historical, and "router" is currently the preferred term. There is also a routing protocol called EGP defined in STD 18, RFC 904. See also {Border Gateway Protocol}, Interior Gateway Protocol.

Wikipédia

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.