Dedekind section - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

Dedekind section - tradução para russo

METHOD OF CONSTRUCTION OF THE REAL NUMBERS
Dedekind cuts; Dedekind section; Completion (order theory); Dedekind's Axiom; Dedekind Cut
  • irrational]], [[real number]]s.

Dedekind section         

математика

дедекиндово сечение

Dedekind         
  • Dedekind, before 1886
GERMAN MATHEMATICIAN (*1831 – †1916)
Julius Dedekind; R. Dedekind; J.W.R. Dedekind; J. W. R. Dedekind; Richard dedekind; Julius Wilhelm Richard Dedekind; Dedekindian; Dedekind, Richard; Dedekind

математика

дедекиндов

section line         
  • Perfectly square 160-acre quarter sections of farmland cover Central [[Indiana]].
  • Section map of [[Rock Creek Township, Saunders County, Nebraska]] (1907)
SQUARE SUBDIVISION OF A U.S. SURVEY TOWNSHIP
Section (land); Section (U.S. land surveying); Section (United states land surveying); Quarter section; Section line; Section line arterial; Section lines; Section (surveying); Quarter-quarter section

медицина

линия разреза

строительное дело

створ

Definição

quarter section
¦ noun N. Amer. a quarter of a square mile.

Wikipédia

Dedekind cut

In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rational numbers into two sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. The set B may or may not have a smallest element among the rationals. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of rationals.

Dedekind cuts can be generalized from the rational numbers to any totally ordered set by defining a Dedekind cut as a partition of a totally ordered set into two non-empty parts A and B, such that A is closed downwards (meaning that for all a in A, xa implies that x is in A as well) and B is closed upwards, and A contains no greatest element. See also completeness (order theory).

It is straightforward to show that a Dedekind cut among the real numbers is uniquely defined by the corresponding cut among the rational numbers. Similarly, every cut of reals is identical to the cut produced by a specific real number (which can be identified as the smallest element of the B set). In other words, the number line where every real number is defined as a Dedekind cut of rationals is a complete continuum without any further gaps.

Como se diz Dedekind section em Russo? Tradução de &#39Dedekind section&#39 em Russo