dipole singularity - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

dipole singularity - tradução para russo

LIMIT OF TWO INFINITESIMALLY CLOSE BY OPPOSITE CHARGES OF ANY TYPE, E.G. ELECTRIC, MAGNETIC, ACOUSTIC, FLUID-DYNAMIC
Dipoles; Electric Dipole; Dipolo; Dipole radiation; Electric Dipole Radiation; Molecular dipole moment; Dipole-Dipole Forces; Dipolar; Dipole operator; Dipole-dipole forces; Molecular dipole; Molecular dipoles
  • The linear molecule CO<sub>2</sub> has a zero dipole as the two bond dipoles cancel.
  • electrostatic potential]] of a horizontally oriented electrical dipole of infinitesimal size. Strong colors indicate highest and lowest potential (where the opposing charges of the dipole are located).
  • Modulus of the Poynting vector for an oscillating electric dipole (exact solution). The two charges are shown as two small black dots.
  • The bent molecule H<sub>2</sub>O has a net dipole. The two bond dipoles do not cancel.
  • Resonance Lewis structures of the ozone molecule
  • Earth]] has a ''south'' magnetic pole near its north geographic pole and a ''north'' magnetic pole near its south pole.
  • Electric field lines of two opposing charges separated by a finite distance.
  • Magnetic field lines of a ring current of finite diameter.
  • Field lines of a point dipole of any type, electric, magnetic, acoustic, etc.

dipole singularity      

общая лексика

особенность типа диполя

electric moment         
  • '''E'''-field]] (not shown) coincide everywhere with those of the '''D'''-field, but inside the sphere, their density is lower, corresponding to the fact that the '''E'''-field is weaker inside the sphere than outside. Many of the external '''E'''-field lines terminate on the surface of the sphere, where there is a bound charge.
  • physical]] electric dipole. Negative potentials are in blue; positive potentials, in red.
  • A uniform array of identical dipoles is equivalent to a surface charge.
  • Quantities defining the electric dipole moment of two point charges.
  • Electric dipole '''p''' and its torque '''τ''' in a uniform '''E''' field.
VECTOR PHYSICAL QUANTITY MEASURING THE SEPARATION OF POSITIVE AND NEGATIVE ELECTRICAL CHARGES WITHIN A SYSTEM
Electric dipole; Electric Dipole Moment; Anomalous electric dipole moment; Coulomb-metre; Coulomb-meter; Separation of charge; Electrical dipole moment; Electric moment; Dipole moments of molecules

физика

электрический момент

singular equation         
  • The [[reciprocal function]], exhibiting [[hyperbolic growth]].
IN GENERAL A POINT AT WHICH A GIVEN MATHEMATICAL OBJECT IS NOT DEFINED, OR A POINT OF AN EXCEPTIONAL SET WHERE IT FAILS TO BE WELL-BEHAVED IN SOME PARTICULAR WAY, SUCH AS DIFFERENTIABILITY
Singularity (maths); Singularity (math); Singulariti (math); Singular equation; Mathematical singularities; Coordinate singularities; Finite-time singularity; Finite-time singularities; Mathematical singularity

математика

сингулярное уравнение

Definição

Dipolar
·adj Having two poles, as a magnetic bar.

Wikipédia

Dipole

In physics, a dipole (from Greek δίς (dis) 'twice', and πόλος (polos) 'axis') is an electromagnetic phenomenon which occurs in two ways:

  • An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system is a pair of charges of equal magnitude but opposite sign separated by some typically small distance. (A permanent electric dipole is called an electret.)
  • A magnetic dipole is the closed circulation of an electric current system. A simple example is a single loop of wire with constant current through it. A bar magnet is an example of a magnet with a permanent magnetic dipole moment.

Dipoles, whether electric or magnetic, can be characterized by their dipole moment, a vector quantity. For the simple electric dipole, the electric dipole moment points from the negative charge towards the positive charge, and has a magnitude equal to the strength of each charge times the separation between the charges. (To be precise: for the definition of the dipole moment, one should always consider the "dipole limit", where, for example, the distance of the generating charges should converge to 0 while simultaneously, the charge strength should diverge to infinity in such a way that the product remains a positive constant.)

For the magnetic (dipole) current loop, the magnetic dipole moment points through the loop (according to the right hand grip rule), with a magnitude equal to the current in the loop times the area of the loop.

Similar to magnetic current loops, the electron particle and some other fundamental particles have magnetic dipole moments, as an electron generates a magnetic field identical to that generated by a very small current loop. However, an electron's magnetic dipole moment is not due to a current loop, but to an intrinsic property of the electron. The electron may also have an electric dipole moment though such has yet to be observed (see electron electric dipole moment).

A permanent magnet, such as a bar magnet, owes its magnetism to the intrinsic magnetic dipole moment of the electron. The two ends of a bar magnet are referred to as poles—not to be confused with monopoles, see Classification below)—and may be labeled "north" and "south". In terms of the Earth's magnetic field, they are respectively "north-seeking" and "south-seeking" poles: if the magnet were freely suspended in the Earth's magnetic field, the north-seeking pole would point towards the north and the south-seeking pole would point towards the south. The dipole moment of the bar magnet points from its magnetic south to its magnetic north pole. In a magnetic compass, the north pole of a bar magnet points north. However, that means that Earth's geomagnetic north pole is the south pole (south-seeking pole) of its dipole moment and vice versa.

The only known mechanisms for the creation of magnetic dipoles are by current loops or quantum-mechanical spin since the existence of magnetic monopoles has never been experimentally demonstrated.

Como se diz dipole singularity em Russo? Tradução de &#39dipole singularity&#39 em Russo