E8 polytope - definição. O que é E8 polytope. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é E8 polytope - definição


E8 polytope         
  • 40px
In 8-dimensional geometry, there are 255 uniform polytopes with E8 symmetry. The three simplest forms are the 421, 241, and 142 polytopes, composed of 240, 2160 and 17280 vertices respectively.
E8 (mathematics)         
  • date=December 16, 2017}}</ref>
  • 150px
  • 120px
  • E8 2d projection with thread made by hand
  • root poset]] with edge labels identifying added simple root position
  • An incomplete simple subgroup tree of E<sub>8</sub>
248-DIMENSIONAL EXCEPTIONAL SIMPLE LIE GROUP
E8 (group); E8 (Mathematics); Lie group E8; E8 shape; E₈ (mathematics); E₈; E8 Lie group; E8 Lie algebra
In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.