clock paradox - definição. O que é clock paradox. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é clock paradox - definição

THOUGHT EXPERIMENT IN SPECIAL RELATIVITY
Twin's Paradox; Twins paradox; Einstein's Twin Paradox; The twin paradox; Clock paradox; Clocks paradox; Langevin paradox; Clock problem; Twin Paradox; Twins Paradox; Twins' Paradox

Twin paradox         
In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, as a consequence of an incorrect Extract of page 23 Extract of page 21 and naive Extract of page 541 Extract of page 176 application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less.
D'Alembert's paradox         
  • Jean le Rond d'Alembert (1717-1783)
  • Steady and separated incompressible potential flow around a plate in two dimensions,<ref>Batchelor (2000), p. 499, eq. (6.13.12).</ref> with a constant pressure along the two free streamlines separating from the plate edges.
  • wake]],<br>
•5: post-critical separated flow, with a turbulent boundary layer.
  • Pressure distribution for the flow around a circular cylinder. The dashed blue line is the pressure distribution according to [[potential flow]] theory, resulting in d'Alembert's paradox. The solid blue line is the mean pressure distribution as found in experiments at high [[Reynolds number]]s. The pressure is the radial distance from the cylinder surface; a positive pressure (overpressure) is inside the cylinder, towards the centre, while a negative pressure (underpressure) is drawn outside the cylinder.
  • circular]] cylinder in a uniform onflow.
THE THEOREM THAT, FOR INCOMPRESSIBLE AND INVISCID POTENTIAL FLOW, THE DRAG FORCE IS 0 ON A BODY MOVING WITH CONSTANT VELOCITY RELATIVE TO THE FLUID, IN CONTRADICTION TO REAL LIFE, WHERE VISCOSITY CAUSES SUBSTANTIAL DRAG, ESPECIALLY AT HIGH VELOCITIES
D'Alembert's Paradox; D'Alembert paradox; Hydrodynamic paradox; D'Alembert Paradox; D'Alemberts Paradox; D'Alemberts' Paradox; Dalembert's Paradox; Hydrodynamical paradox; Hydrodynamics paradox; D'alembert's Paradox
In fluid dynamics, d'Alembert's paradox (or the hydrodynamic paradox) is a contradiction reached in 1752 by French mathematician Jean le Rond d'Alembert.Jean le Rond d'Alembert (1752).
Paradox (literature)         
LITERARY DEVICE; ANOMALOUS JUXTAPOSITION OF INCONGRUOUS IDEAS FOR THE SAKE OF STRIKING EXPOSITION OR UNEXPECTED INSIGHT
Paradox of poetry; Literary paradox
In literature, the paradox is an anomalous juxtaposition of incongruous ideas for the sake of striking exposition or unexpected insight. It functions as a method of literary composition and analysis that involves examining apparently contradictory statements and drawing conclusions either to reconcile them or to explain their presence.

Wikipédia

Twin paradox

In physics, the twin paradox is a thought experiment in special relativity involving identical twins, one of whom makes a journey into space in a high-speed rocket and returns home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin sees the other twin as moving, and so, as a consequence of an incorrect and naive application of time dilation and the principle of relativity, each should paradoxically find the other to have aged less. However, this scenario can be resolved within the standard framework of special relativity: the travelling twin's trajectory involves two different inertial frames, one for the outbound journey and one for the inbound journey. Another way of looking at it is to realize the travelling twin is undergoing acceleration, which makes him a non-inertial observer. In both views there is no symmetry between the spacetime paths of the twins. Therefore, the twin paradox is not actually a paradox in the sense of a logical contradiction.

Starting with Paul Langevin in 1911, there have been various explanations of this paradox. These explanations "can be grouped into those that focus on the effect of different standards of simultaneity in different frames, and those that designate the acceleration [experienced by the travelling twin] as the main reason". Max von Laue argued in 1913 that since the traveling twin must be in two separate inertial frames, one on the way out and another on the way back, this frame switch is the reason for the aging difference. Explanations put forth by Albert Einstein and Max Born invoked gravitational time dilation to explain the aging as a direct effect of acceleration. However, it has been proven that neither general relativity, nor even acceleration, are necessary to explain the effect, as the effect still applies if two astronauts pass each other at the turnaround point and synchronize their clocks at that point. Such observer can be thought of as a pair of observers, one travelling away from the starting point and another travelling toward it, passing by each other where the turnaround point would be. At this moment, the clock reading in the first observer is transferred to the second one, both maintaining constant speed, with both trip times being added at the end of their journey.