countably many - definição. O que é countably many. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é countably many - definição

SET WITH THE SAME CARDINALITY AS THE SET OF NATURAL NUMBERS
Countably infinite; Countable sets; Countable; Countably; Denumerable; Countably many; Countability; Denumerability; Countably infinite set; Denumerable Set; Denumerably Infinite; Countable space; Countable infinity; Denumerable set; Countable infinite; Countable Set; Infinitely countable; Infinitely countable set; Listable infinity
  • Bijective mapping from integer to even numbers
  • Enumeration for countable number of countable sets
  • The [[Cantor pairing function]] assigns one natural number to each pair of natural numbers

countably many         
Countable         
·adj Capable of being numbered.
denumerable         
[d?'nju:m(?)r?b(?)l]
¦ adjective Mathematics able to be counted by one-to-one correspondence with the set of integers.
Derivatives
denumerability noun
denumerably adverb
Origin
early 20th cent.: from late L. denumerare 'count out'.

Wikipédia

Countable set

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite.

The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers.