isomorphic manifolds - definição. O que é isomorphic manifolds. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é isomorphic manifolds - definição

Computably isomorphic

List of manifolds         
WIKIMEDIA LIST ARTICLE
Categories of manifolds
This is a list of particular manifolds, by Wikipedia page. See also list of geometric topology topics.
Isomorphic keyboard         
MUSICAL INPUT DEVICE CONSISTING OF A 2D GRID OF BUTTONS OR KEYS ON WHICH ANY GIVEN SEQUENCE/COMBINATION OF MUSICAL INTERVALS HAS THE "SAME SHAPE" ON THE KEYBOARD WHEREVER IT OCCURS—WITHIN A KEY, ACROSS KEYS, ACROSS OCTAVES, AND ACROSS TUNINGS
Isomorphic keyboards; Tuning invariance; Tuning-invariant; Tuning invariant
An isomorphic keyboard is a musical input device consisting of a two-dimensional grid of note-controlling elements (such as buttons or keys) on which any given sequence and/or combination of musical intervals has the "same shape" on the keyboard wherever it occurs – within a key, across keys, across octaves, and across tunings.
Flow distribution in manifolds         
  • Fig. 2. Control volume
  • Fig. 5. Different configurations
  • Fig. 3. T-junction and corresponding network
  • Fig. 4. Velocity profile along a manifold
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of the following types: dividing, combining, Z-type and U-type manifolds (Fig.

Wikipédia

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.