isomorphic models - definição. O que é isomorphic models. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é isomorphic models - definição

Computably isomorphic

Models (painting)         
PAINTING BY GEORGES SEURAT
The Three Models; Les Poseuses
Models, also known as The Three Models and Les Poseuses, is a work by Georges Seurat, painted between 1886 and 1888 and held by the Barnes Foundation in Philadelphia. Models was exhibited at the fourth Salon des Indépendants in spring of 1888.
Econometric model         
STATISTICAL MODELS USED IN ECONOMETRICS
Econometric modeling; Econometric models
Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon.
Reference atmospheric model         
MODELS THAT DESCRIBE HOW THE IDEAL GAS PROPERTIES OF AN ATMOSPHERE CHANGE, PRIMARILY AS A FUNCTION OF ALTITUDE
Atmospheric profile; Static atmospheric models; Static atmospheric model; Reference atmosphere
A reference atmospheric model describes how the ideal gas properties (namely: pressure, temperature, density, and molecular weight) of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc.

Wikipédia

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.