symplectic bundle - definição. O que é symplectic bundle. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é symplectic bundle - definição

Symplectic transformation; Symplectic operator

Symplectic geometry         
BRANCH OF DIFFERENTIAL GEOMETRY AND DIFFERENTIAL TOPOLOGY
Symplectic Geometry; Symplectic structure; Symplectic topology
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry was founded by the Russian mathematician Vladimir Arnold and has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.
Bundle of His         
COLLECTION OF HEART MUSCLE CELLS SPECIALIZED FOR ELECTRICAL CONDUCTION
Atrioventricular bundle of His; Bundle of his; HIS bundle; HIS Bundle; Artioventricular bundle; AV bundle; Atrioventricular bundle; His' bundle; His-bundle pacing; Crus of heart; His bundle
The bundle of His (BH) or His bundle (HB) ( "hiss"Medical Terminology for Health Professions, Spiral bound Version. Cengage Learning; 2016.
Symplectic spinor bundle         
ON A METAPLECTIC MANIFOLD, THE HILBERT SPACE BUNDLE ASSOCIATED TO THE METAPLECTIC STRUCTURE VIA THE METAPLECTIC REPRESENTATION
In differential geometry, given a metaplectic structure \pi_{\mathbf P}\colon{\mathbf P}\to M\, on a 2n-dimensional symplectic manifold (M, \omega),\, the symplectic spinor bundle is the Hilbert space bundle \pi_{\mathbf Q}\colon{\mathbf Q}\to M\, associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant.

Wikipédia

Symplectic matrix

In mathematics, a symplectic matrix is a 2 n × 2 n {\displaystyle 2n\times 2n} matrix M {\displaystyle M} with real entries that satisfies the condition

where M T {\displaystyle M^{\text{T}}} denotes the transpose of M {\displaystyle M} and Ω {\displaystyle \Omega } is a fixed 2 n × 2 n {\displaystyle 2n\times 2n} nonsingular, skew-symmetric matrix. This definition can be extended to 2 n × 2 n {\displaystyle 2n\times 2n} matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.

Typically Ω {\displaystyle \Omega } is chosen to be the block matrix

where I n {\displaystyle I_{n}} is the n × n {\displaystyle n\times n} identity matrix. The matrix Ω {\displaystyle \Omega } has determinant + 1 {\displaystyle +1} and its inverse is Ω 1 = Ω T = Ω {\displaystyle \Omega ^{-1}=\Omega ^{\text{T}}=-\Omega } .