synchronous frequency - definição. O que é synchronous frequency. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é synchronous frequency - definição

PROCESS OF MATCHING THE SPEED AND FREQUENCY OF A GENERATOR OR OTHER SOURCE TO A RUNNING ALTERNATING CURRENT POWER NETWORK
Alternator synchronization; Isochronous frequency; Sochronous frequency; Synchronous generator
  •  From top to bottom: [[synchroscope]], voltmeter, frequency meter. When the two systems are synchronized, the pointer on the synchrosope is stationary and points straight up.

Frequencies         
  • Diagram of the relationship between the different types of frequency and other wave properties.
  • Complete spectrum of [[electromagnetic radiation]] with the visible portion highlighted
  • Modern frequency counter
  • Hz]]
  • The [[sound wave]] spectrum, with rough guide of some applications
NUMBER OF OCCURRENCES OR CYCLES PER TIME
Wave period; Frequencies; Period (physics); Frequency (wave motion); Frequency dependence; Oscillation frequency; Frekvens; Periodic time; Frequency measurement; Period (frequency); Temporal frequency; Repetition frequency; Occurrence frequency; Event frequency; Oscillation rate; Repetition rate; Occurrence rate; Event rate; Rate of occurrence; Rate of repetition; Rate of oscillation; Wave frequency; Ordinary frequency; Aperiodic frequency
·pl of Frequency.
synchronous motor         
  • The rotating magnetic field is formed from the sum of the magnetic field vectors of the three phases of the stator windings.
  • DC-excited motor, 1917. The exciter is clearly seen at the rear of the machine.
  • Rotor of a large water pump. The slip rings can be seen below the rotor drum.
  • Stator winding of a large water pump
  • Small synchronous motor with integral stepdown gear from a microwave oven
  • Teletype]] machine, non-excited rotor type, manufactured from 1930 to 1955
  • V-curve of a synchronous machine
MOTOR WITH ROTATION SYNCHRONIZED TO THE SUPPLY CURRENT FREQUENCY
Synchronous machine; Permanent magnet synchronous motor; PMSM; Permanent-magnet synchronous motor; Permanent-magnet motor; Senkron motor; Permanent magnet synchronous; Synchronous electric motor
¦ noun an electric motor having a speed exactly proportional to the current frequency.
Audio frequency         
  • C3, an octave below middle C. The frequency is half that of middle C (131 Hz).
  • C5, an octave above middle C. The frequency is twice that of middle C (523 Hz).
  • middle C]] (262 Hz). (Scale: 1 square is equal to 1 [[millisecond]])
PERIODIC VIBRATION WHOSE FREQUENCY IS AUDIBLE TO THE AVERAGE HUMAN
Audio frequencies; Sound frequency; Frequency (sound); Audio Frequency; Audible frequency; Audio-frequency; Audiofrequency
An audio frequency or audible frequency (AF) is a periodic vibration whose frequency is in the band audible to the average human, the human hearing range. The SI unit of frequency is the hertz (Hz).

Wikipédia

Synchronization (alternating current)

In an alternating current (AC) electric power system, synchronization is the process of matching the frequency and phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.

A direct current (DC) generator can be connected to a power network simply by adjusting its open-circuit terminal voltage to match the network's voltage, by either adjusting its speed or its field excitation. The exact engine speed is not critical. However, an AC generator must additionally match its timing (frequency and phase) to the network voltage, which requires both speed and excitation to be systematically controlled for synchronization. This extra complexity was one of the arguments against AC operation during the war of currents in the 1880s. In modern grids, synchronization of generators is carried out by automatic systems.