transitivity lemma - definição. O que é transitivity lemma. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é transitivity lemma - definição

Lindelof lemma; Lindelöf lemma; Lindelof's lemma; Lindeloef lemma; Lindeloef's lemma

Teichmüller–Tukey lemma         
THEOREM
Teichmueller-Tukey lemma; Tukey's lemma; Teichmüller-Tukey lemma; Teichmuller–Tukey lemma; Teichmuller-Tukey lemma; Tukey lemma
In mathematics, the Teichmüller–Tukey lemma (sometimes named just Tukey's lemma), named after John Tukey and Oswald Teichmüller, is a lemma that states that every nonempty collection of finite character has a maximal element with respect to inclusion. Over Zermelo–Fraenkel set theory, the Teichmüller–Tukey lemma is equivalent to the axiom of choice, and therefore to the well-ordering theorem, Zorn's lemma, and the Hausdorff maximal principle.
Nine lemma         
CATEGORY THEORY LEMMA ABOUT COMMUTATIVE DIAGRAMS
9-lemma
[mathematics], the nine lemma (or 3×3 lemma) is a statement about [[commutative diagrams and exact sequences valid in the category of groups and any abelian category. It states: if the diagram to the right is a commutative diagram and all columns as well as the two bottom rows are exact, then the top row is exact as well.
Zorn's lemma         
  • year=2003}}</ref> Zorn's lemma is not needed for finite graphs, such as the one pictured here.
STATEMENT EQUIVALENT TO THE AXIOM OF CHOICE, ABOUT THE EXISTENCE OF A MAXIMAL ELEMENT IN A POSET WITH A MAXIMAL CHAIN CONDITION
Zorn Lemma; Kuratowski-Zorn lemma; Zorn's Lemma; Zorn lemma; Zorns lemma; Kuratowski–Zorn lemma
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element.

Wikipédia

Lindelöf's lemma

In mathematics, Lindelöf's lemma is a simple but useful lemma in topology on the real line, named for the Finnish mathematician Ernst Leonard Lindelöf.