Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:
Аксиома Архимеда, или принцип Архимеда, или свойство Архимеда — математическое предложение, названное по имени древнегреческого математика Архимеда. Впервые это предложение было сформулировано Евдоксом Книдским в его теории отношений величин (понятие величины у Евдокса охватывает как числа, так и непрерывные величины: отрезки, площади, объёмы):
Если имеются две величины, и , и меньше , то, взяв слагаемым достаточное количество раз, можно превзойти :
Например, для отрезков аксиома Архимеда звучит так: если даны два отрезка, то, отложив достаточное количество раз меньший из них, можно покрыть больший.
Утверждение аксиомы Архимеда кажется тривиальным, но её подлинный смысл заключается в отсутствии бесконечно малых и/или бесконечно больших величин. Так, эта аксиома не выполняется в нестандартном анализе: множество гипервещественных чисел содержит бесконечно малые и бесконечно большие величины. Такие элементы могут не удовлетворять аксиоме Архимеда. Возможны другие примеры.
Математические структуры, для которых свойство Архимеда выполняется, называют архимедовыми, например архимедово поле и архимедова группа, а те, для которых не выполняется, — неархимедовыми.