Брианшона теорема - definição. O que é Брианшона теорема. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Брианшона теорема - definição

Брианшона теорема
  • thumb
  • Brianshon-4-1
  • 160px
  • right

Брианшона теорема         

теорема геометрии, утверждающая, что во всяком шестиугольнике, описанном около конического сечения - Эллипса (в частности, окружности), гиперболы (См. Гипербола), параболы (См. Парабола), - прямые, соединяющие три пары противоположных вершин, проходят через одну точку (см. рис.); названа по имени французского математика Ш. Ж. Брианшона (Ch. J. Brianchon, 1806). Б. т. находится в тесной связи с Паскаля теоремой (См. Паскаля теорема). Эти две теоремы устанавливают основные проективные свойства конических сечений.

Лит.: Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961, § 144-46.

Рис. к ст. Брианшона теорема.

Теорема Брианшона         
Теорема Брианшона — классическая теорема проективной геометрии. Теорема была доказана Брианшоном в 1810 году.
Пи-теорема         
Пи-теорема (\Pi-теорема, \pi-теорема) — основополагающая теорема анализа размерностей. Теорема утверждает, что если имеется зависимость между n физическими величинами, не меняющая своего вида при изменении масштабов единиц в некотором классе систем единиц, то она эквивалентна зависимости между, вообще говоря, меньшим числом p=n-k безразмерных величин, где k — наибольшее число величин с независимыми размерностями среди исходных n величин.

Wikipédia

Теорема Брианшона

Теорема Брианшона — классическая теорема проективной геометрии. Теорема была доказана Брианшоном в 1810 году.