Обратная функция - definição. O que é Обратная функция. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Обратная функция - definição

ФУНКЦИЯ, ДАЮЩАЯ ТОЖДЕСТВЕННУЮ ПРИ КОМПОЗИЦИИ С ИСХОДНОЙ
Обратное отображение; Сечение отображения

ОБРАТНАЯ ФУНКЦИЯ         
функция, обращающая зависимость, выражаемую данной функцией. Так, если y = f (x) - данная функция, то переменная х, рассматриваемая как функция переменной у: х = ?(y), является обратной по отношению к данной функции у = f (x). Напр., х= есть обратная функция по отношению к y = x3.
Обратная функция         

Функция, обращающая зависимость, выражаемую данной функцией. Так, если у = f (x) - данная функция, то переменная х, рассматриваемая как функция переменной у, х = φ (y), является обратной по отношению к данной функции у = f (x). Например, О. ф. для у = ax + b (а≠0) является х = (у-b)/a, О. ф. для у = ех является х = ln у и т.д. Если х = φ(y) есть О. ф. по отношению к у = f (x), то и у = f (x) есть О. ф. по отношению к х = φ(y). Областью определения О. ф. является область значений данной функции, а областью значений О. ф.- область определения данной. Графики двух взаимно обратных функций у = f (x) и у = φ (x) (где независимое переменное обозначено одной и той же буквой х), как, например, у = ax + b и у = (х-b)/a, у = ех и у = ln х, симметричны по отношению к биссектрисе у = х первого и третьего координатных углов. Функция, обратная по отношению к однозначной функии, может быть многозначной (ср., например, функции х2 и ). Для однозначности О. ф. необходимо и достаточно, чтобы данная функция у = f (x) принимала различные значения для различных значений аргумента. Для непрерывной функции последнее условие может выполняться только в том случае, если данная функция монотонна (имеются в виду функции действительного аргумента, принимающие действительные значения). О. ф. по отношению к непрерывной и монотонной функции однозначна, непрерывна и монотонна.

Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin х служит интервал - π/2< x < π/2; ему соответствует т. н. главная ветвь arc sin х обратной функции Arc sin х. Для пары однозначных взаимно обратных функций имеют место соотношения φ[f (x)]=x и f [φ(x)] = х, первое из которых справедливо для всех значений х из области определения функции f (x), а второе - для всех значений х из области определения функции φ (x); например, elnx = х (х > 0), 1n (ex) = х (- ∞ < х < ∞). Иногда функцию, обратную к f (x) =у, обозначают f- -1(y) = х, так что для непрерывной и монотонной функции f (x):

F -1[f (x)]=f [f -1) x)]=x.

Вообще же f --1[f (x)] представляет собой многозначную функцию от х, одним из значений которой является х; так, для f (x) = x2, х (≠ 0) является лишь одним из двух значений f --1[f (x)] = √x2 (другое: -х); для f (x) = sin х, х является лишь одним из бесконечного множества значений

f- -1[f (x)] = Arc sin [sin x] = (-1) n x + nπ,

n = 0, ± 1, ± 2,....

Если у = f (x) непрерывна и монотонна в окрестности точки х = x0 и дифференцируема при х = x0, причём f'(x0) ≠ 0, то f --1(y) дифференцируема при у = у0 и

(формула дифференцирования О. ф.). Так, для -π/2 < х < π/2, у = f (x) = sin х непрерывна и монотонна, f'(x) = cos х ≠ 0 и f- -1(y)= arc sin у (-1< y <1) дифференцируема, причём

где имеется в виду положительное значение корня (так как cos х > 0 для -π/2 < х < π/2).

ОБРАТНАЯ СИЛА ЗАКОНА         
Обратная сила
принцип, согласно которому закон может быть применен к отношениям, возникшим до его принятия, только если об этом прямо указано в этом законе. По общему правилу закон обратной силы не имеет, за исключением уголовного закона, устраняющего наказуемость деяния или смягчающего меру наказания.

Wikipédia

Обратная функция

Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции f {\displaystyle f} обычно обозначается f 1 {\displaystyle f^{-1}} , иногда также используется обозначение f i n v {\displaystyle f^{\mathrm {inv} }} .

Функция, имеющая обратную, называется обратимой.

O que é ОБРАТНАЯ ФУНКЦИЯ - definição, significado, conceito