Полупроводниковый диод - definição. O que é Полупроводниковый диод. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Полупроводниковый диод - definição


Полупроводниковый диод         
  • Схема кремниевого диода, изображение на схемах.
Полупроводнико́вый диод — полупроводниковый прибор, в широком смысле — электронный прибор, изготовленный из полупроводникового материала, имеющий два электрических вывода (электрода). В более узком смысле — полупроводниковый прибор, во внутренней структуре которого сформирован один p-n-переход.
ПОЛУПРОВОДНИКОВЫЙ ДИОД         
  • Схема кремниевого диода, изображение на схемах.
полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл - полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов.
Полупроводниковый диод         
  • Схема кремниевого диода, изображение на схемах.

двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие "П. д." объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов (См. Полупроводниковые приборы). В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (См. Электронно-дырочный переход) (р-n-перехода). Если к р-n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то Потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область - течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р-n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20-30 в до 1-2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными. При напряжениях, превышающих U*o6p, ток резко возрастает, и возникает необратимый (тепловой) пробой р-n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы (См. Выпрямительный столб), в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники) составляет > 10-5-10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50-2000 гц).

Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7-10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами (См. Диодная матрица), главным образом в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р-n-перехода - резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации U. На использовании такого пробоя основана работа полупроводниковых стабилитронов (См. Полупроводниковый стабилитрон). Стабилитроны общего назначения с Ucт от 3-5 в до 100-150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность U (до 1․10-5- 5․10-6 К-1), - в качестве источников эталонного и опорного напряжений.

В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р-n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n-переходе (характеризующаяся временем 10-9-10-10 сек) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах (См. Лавинно-пролётный полупроводниковый диод), позволяющих осуществлять генераторы с частотами до 150 Ггц.

Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р-n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис. 3), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

При подаче на р-n-переход обратного смещения, не превышающего U*обр, он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в Варикапах, применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах (См. Параметрический полупроводниковый диод), служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Св от напряжения Uo6p.

У р-n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (Полупроводниковый диод 10-2 мкм), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект). На этом свойстве основана работа туннельного диода (См. Туннельный диод), применяемого в сверхбыстродействующих импульсных устройствах (например, Мультивибраторах, Триггерах), в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис. 4) существенно отличаются от ВАХ других П. д. как наличием участка с "отрицательной проводимостью", ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р-n-р-n-структуру и называют динисторами (см. Тиристор), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р-n-перехода - Ганна диоды. В П. д. используют и др. разновидности ПП структур: контакт металл - полупроводник (см. Шотки эффект, Шотки диод) и р-i-n-структуру, характеристики которых во многом сходны с характеристиками р-n-перехода. Свойство р-i-n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в Фотодиодах и детекторах ядерных излучений (См. Детекторы ядерных излучений), устроенных т. о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р-n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации (См. Рекомбинация) электронов и дырок, проявляющийся в свечении некоторых р-n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах (См. Светоизлучающий диод). К П. д. могут быть отнесены также и полупроводниковые лазеры (См. Полупроводниковый лазер).

Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология), которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов (См. Полупроводниковые материалы) для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов - Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус (рис. 5).

В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая - класс диода, цифры определяют порядковый номер типа, а последняя буква - его группу (например, ГД402А - германиевый универсальный диод; КС196Б - кремниевый стабилитрон).

От своих электровакуумных аналогов, например Кенотрона, газоразрядного Стабилитрона, индикатора газоразрядного (См. Индикаторы газоразрядные), П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах (См. Интегральная схема) и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

Об исторических сведениях см. в ст. Полупроводниковая электроника.

Лит.: Полупроводниковые диоды. Параметры. Методы измерений, М., 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973.

Ю. Р. Носов.

Рис. 1. Структурная схема полупроводникового диода с р - n-переходом: 1 - кристалл; 2 - выводы (токоподводы); 3 - электроды (омические контакты); 4 - плоскость р - n-перехода.

Рис. 2. Типичная вольтамперная характеристика полупроводникового диода с р - n-переходом: U - напряжение на диоде; I - ток через диод; U*oбр и I*oбр - максимальное допустимое обратное напряжение и соответствующий обратный ток; U - напряжение стабилизации.

Рис. 3. Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р - n-переходом: rp-n - нелинейное сопротивление р - n-перехода; rб - сопротивление объёма полупроводника (базы диода); r - сопротивление поверхностных утечек; СБ - барьерная ёмкость р - n-перехода; Сдиф - диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; Ск - ёмкость корпуса; Lк - индуктивность токоподводов; А и Б - выводы. Сплошной линией показано подключение элементов, относящихся к собственно р - n-переходу.

Рис. 4. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U - напряжение на диоде; I - ток через диод.

Рис. 5. Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 - диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стеклянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный.

O que é Полупроводниковый диод - definição, significado, conceito