интенсивность движения - definição. O que é интенсивность движения. Significado, conceito
DICLIB.COM
Ferramentas linguísticas em IA
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é интенсивность движения - definição

ПРЕДСТАВЛЕНИЕ СИГНАЛОВ И СЛУЧАЙНЫХ ПРОЦЕССОВ
Спектральная интенсивность

Уравнение движения         
Уравнения движения
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространствеКогда говорят об уравнениях движения в общеупотребительном смысле, подразумеваются дифференциальные или интегро-дифференциальные уравнения (хотя некоторые другие типы уравнений, например разностные — для дискретных систем — могут представлять собой достаточно близкую аналогию).
Счёт движения капиталов         
Счет движения капиталов; Баланс движения капитала
Счёт движения капиталов, баланс движения капиталов — раздел платёжного баланса страны, один из субсчетов системы национальных счетов, отражающий движение непроизведённых активов и капитальных трансфертов между страной и остальным миром.
Датчик движения         
  • Микроволновый датчик движения
  • Прожектор, снабжённый датчиком движения
  • Чувствительные элементы инфракрасных датчиков
  • Инфракрасный датчик движения
Детектор движения; Датчик присутствия
Да́тчик движе́ния (, сенсор движения) — сигнализатор, фиксирующий перемещение объектов и используемый для контроля за окружающей обстановкой или автоматического запуска требуемых действий в ответ на перемещение объектов.

Wikipédia

Спектральная плотность

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.

Если процесс x ( t ) {\displaystyle x(t)} имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

Функция S x ( f ) = | X ( f ) | 2 {\displaystyle S_{x}(f)=|X(f)|^{2}} характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x ( t ) {\displaystyle x(t)} , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность мощности такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

Если существует прямое преобразование, то существует и обратное преобразование Фурье, которое по известной S x ( f ) {\displaystyle S_{x}(f)} определяет k x ( τ ) {\displaystyle k_{x}(\tau )} :

Если полагать в формулах (3) и (4) соответственно f = 0 {\displaystyle f=0} и τ = 0 {\displaystyle \tau =0} , имеем

Формула (6) с учётом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S x ( f ) d f {\displaystyle S_{x}(f)df} можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f d f / 2 {\displaystyle f-df/2} до f + d f / 2 {\displaystyle f+df/2} . Если понимать под x ( t ) {\displaystyle x(t)} случайный (флуктуационный) ток или напряжение, то величина S x ( f ) {\displaystyle S_{x}(f)} будет иметь размерность энергии [В2/Гц] = [В2с]. Поэтому S x ( f ) {\displaystyle S_{x}(f)} иногда называют энергетическим спектром. В литературе часто можно встретить другую интерпретацию: σ x 2 {\displaystyle \sigma _{x}^{2}} – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S x ( f ) {\displaystyle S_{x}(f)} называют спектром мощности случайного процесса.

Exemplos do corpo de texto para интенсивность движения
1. Его интересовали интенсивность движения, график, интервалы, скорость.
2. В летний период интенсивность движения резко возрастает.
3. Достаточно посмотреть интенсивность движения и сделать выводы.
4. Еще и интенсивность движения обязательно надо учесть...
5. Но интенсивность движения практически не снизилась.
O que é Уравнение движения - definição, significado, conceito